[1] J. W. Strutt, On waves propagated along the plane surface of an elastic solid, Proceedings of the London Mathematical Society, Vol. 17, No. 1, pp. 4-11, 1885.
[2] R. White, F. Voltmer, Direct piezoelectric coupling to surface elastic waves, Applied Physics Letters, Vol. 7, No. 12, pp. 314–316, 1965.
[3] L. Bo, C. Xiao, C. Hualin, Surface acoustic wave devices for sensor applications, Journal of Semiconductors, Vol. 37, No. 2, pp. 1674-4926, 2016.
[4] K. Lange, B. Rapp, M. Rapp, Surface acoustic wave biosensors: a review, Analytical and Bioanalytical Chemistry, Vol. 391, No. 5, pp. 1509–1519, 2008.
[5] S. Powell, A. David, K. Kalantar-Zadeh, Layered surface acoustic wave chemical and bio-sensors, Encyclopedia of Sensors, Melbourne, Australia, RMIT University, pp. 1–18, 2006.
[6] C. Campbell, Teqnique, Device and mobile application, Surface Acoustic Wave Devices and Their Signal Processing Applications, San diego, California Academic press, 1985, pp. 320-325.
[7] W. Welsch, C. Klein, M. V. Schickfus, Development of a surface acoustic wave immunosensor, Analytical Chemistry, Vol. 68, No. 13, pp. 2000–2004, 1996.
[8] R. C. Chang, S. Chu, C. S. Hong, Y. T. Chuang, A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures, Thin Solid Films, Vol. 498, No. 1–2, pp. 146-151, 2006.
[9] D. Branch, S. Brozik, Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36°YX LiTaO3, Biosensors and Bioelectronics, Vol. 19, No. 8, pp. 849–859, 2004.
[10] P. Kiełczyn´ski, M. Szalewski, A. Balcerzak, Applications of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperatures, Ultrasonics, Vol. 5, pp. 921–924, 2011.
[11] P. Kiełczyn´ski, M. Szalewski, A. Balcerzak, Applications of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperatures, Ultrasonics, Vol. 51, No. 8, pp. 921–924, 2011.
[12] P. Kiełczyn´ski, M. Szalewski, A. Balcerzak, Inverse procedure for simultaneous evaluation of viscosity and density of Newtonian liquids from dispersion curves of Love waves, Journal of Applied Physics, Vol. 116, No. 4, pp. 1-7, 2014.
[13] H. Oh, W. Wang, K. Lee, C. Min, S. Yang, The development of a wireless. Love wave biosensor on 41°YX LiNbO3, Smart Materials And Structures, Vol. 18, pp. 443-749, 2009.
[14] W. Wang, H. Oh, K. Lee, S. Yang, Enhanced sensitivity of wireless chemical sensor based on Love wave mode, Japanese Journal of Applied Physics, Vol. 47, No. 6, pp. 7372–7379, 2008.
[15] H. Wang, Z. Zhao, Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface, Archive of Applied Mechanics, Vol. 83, No. 1, pp. 43–51, 2013.
[16] I. Sayago, D. Matatagui, M. J. Fernández, J. Fontecha, I. Jurewicz, R. Garriga, E. Muñoz, Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants, Talanta, Vol. 148, pp. 393–400, 2016.
[17] D. Greve, T. Chin, P. Zheng, Surface acoustic wave devices for harsh environment wireless sensing, Sensors, Vol. 13, No. 6, pp. 6910-6935, 2013.
[18] H. Morgan, N. G. Green, AC Electrokinetics, pp. 23-80, Hertfordshire: Institute of Physics, 2003.
[19] Y. Fu, J. Luo, X. Du, A. Flewitt, Y. Li, G. Markx, A. Walton, W. Milne, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensor and Actuators B: Chemical, Vol. 143, No. 2, pp. 606–619, 2010.
[20] I. Voiculescu and A. Nordin, Acoustic wave based MEMS devices for biosensing applications, Biosensensor and Bioelectronics, Vol. 33, No. 1, pp. 1-9, 2012.
[21] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, San Diego: Mc Master universaity, 1998.