مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بازیابی انرژی گرمایی موجود در گاز خروجی از اگزوز یک موتور احتراق داخلی اشتعال جرقه‌ای با استفاده از سیکل ترکیبی موتور استرلینگ

نویسندگان
دانشگاه علم و صنعت ایران
چکیده
در خودروهای سواری متداول حدود 40 درصد از انرژی سوخت به توان مفید تبدیل شده و بقیه توسط سیستم خنک‌کاری و اگزوز به محیط هدایت می‌شود. لذا استفاده از یک سیکل تکمیلی در مسیر گازهای خروجی از اگزوز، یکی از روشی‌های جذاب بازیابی انرژی می‌باشد. در این تحقیق از یک سیکل استرلینگ برای این منظور استفاده شد. در ابتدا، به شبیه سازی تک‌بعدی موتور احتراق داخلی جرقه‌ای ای اف سون تنفس طبیعی پرداخته شد و برای صحه گذاری نتایج شبیه سازی، از نتایج تست تجربی آن استفاده شد. نتایج نشان داد دمای گازهای خروجی از اگزوز، بنا به شرایط عملکردی موتور، از393 تا 848 درجه سانتی‌گراد تغییر می‌کند، لذا با نصب بخش گرمکن موتور استرلینگ در مسیرگازهای خروجی از موتور می‌توان این انرژی اتلافی را به کار مفید تبدیل کرد. برای صحه گذاری مدل تک بعدی موتور استرلینگ، از نتایج تجربی موتور استرلینگ سولو وی 161 استفاده شد. پس از صحه گذاری نتایج،. اقدام به شبیه سازی‌ سیکل ترکیبی، برای سه فشار کاری 50، 60 و 70 بار موتور استرلینگ و در دورهای موتور 2000 تا 4500 دور بر دقیقه انجام شد. نتایج نشان داد که ‌در فشار بهینه 50 بار برای موتور استرلینگ، شاهد افزایش توان 12.2 درصد و به طور میانگین 5.2 درصد در راندمان موتور ای اف سون بوده که این مقادیر بدون در نظر گرفتن وزن موتور استرلینگ اضافه شده به خودرو می‌باشد که با لحاظ نمودن آن، شاهد تاثیر نه چندان زیاد آن بر توان سیکل ترکیبی خواهیم بود.
کلیدواژه‌ها

عنوان مقاله English

Recovery of exhaust waste heat for an ICE using a Stirling engine combined cycle

نویسندگان English

Ali Nassiri-Toosi
Sadegh Hasanpour
چکیده English

In conventional internal combustion engines, about 40% of fuel energy is turned into useful power and the rest is driven by cooling and exhaust system out of the engine. Therefore, there is a ground to recover energy from this wasted energy by fixing an additional cycle inline with the exhaust gas outlet. In this research, a stirling cycle was used for this purpose. Initially, the internal combustion engine was simulated. The engine studied was an EF7-NA spark ignition internal combustion engine and the simulation results were validated by using experimental results. The results showed that the exhaust gas outlet temperature varies from 393 to 848 ° C, according to engine operating conditions. Therefore, by installing a Stirling engine heater inline with the exhaust gases from the EF7 engine, the wasted energy can be turned into useful work. To validate the results of one-dimensional Stirling engine simulation, the experimental results of the Stirling Solo V161 engine were used. After validating the Stirling engine model, the combined cycle was simulated, combining a Stirling engine at working pressure of 50, 60 and 70 bar and EF7 engine at engine speed of 2000 to 4500 rpm. The results showed that at an optimal pressure of 50 barfor the Stirling engine, the EF7 power gain was 12.2% and an average efficiency increase of 5.2%, regardless of the weight of the added stirling engine in the car which considering that, a low impact on the power of the combined cycle is expected.

کلیدواژه‌ها English

Otto-Stirling Combined Cycle
Waste power recovery system
Internal combustion engines spark ignition
Exhaust gas energy recovery
[1] T. Wang, Y. Zhang, Z. Peng, G. Shu, A review of researches on thermal exhaust heat recovery with Rankine cycle, Renewable and Sustainable Energy Reviews, Vol. 15, issue 6, pp. 2862-2871, 2011.
[2] G. Shu, X. Li, H. Tian, X. Liang, H. Wei, X. Wang, Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle, Applied Energy, Vol. 119, pp. 204-217, 2014.
[3] Y. Zhang, Y. Wu, G. Xia, C. Ma, W. Ji, S. Liu, K. Yang, F. Yang, Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine, Energy, Vol. 77, No. 1, pp. 499-508, 2014.
[4] G. Shu, X. Li, H. Tian, X. Liang, H. Wei, and X. Wang, Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle, Applied Energy, Vol. 1, No. 119, pp. 204-217, 2014.
[5] A. Boretti, Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine, Applied Thermal Engineering, Vol. 36, No. 1, pp. 73-77, 2012.
[6] S. Song, H. Zhang, Z. Lou, F. Yang, K. Yang, H. Wang, C. Bei, Y. Chang, B. Yao, Performance analysis of exhaust waste heat recovery system for stationary CNG engine based on organic Rankine cycle, Applied Thermal Engineering, Vol. 76, No. 1, pp. 301-309, 2015.
[7] W. Aladayleh and A. Alahmer, Recovery of exhaust waste heat for ICE using the beta type stirling engine, Journal of Energy, Vol. 2015, 2015; http://dx.doi.org/10.1155/2015/495418.
[8] M. Zia Bashar Hagh, M. Mahmoodi, Numerical solution of beta type stirling engine by thermal receiver application for increasing efficiency and output power, Journal of Basic and Applied Scientific Research, Vol. 2, No. 2, pp. 1395-1406, 2012.
[9] S. Prakash, A. R. Guruvayurappan, Using stirling engine to increase the efficiency of an IC engine, Processing of the World Congress on Engineering, Vol. 3 London, U.K., July 6-8, 2011.
[10] S. A. Madani, Modeling of Gasoline Engine Cycle, Master's thesis Mechanical Engineering, Energy Conversion, Faculty of Mechanics, Sharif University of Technology, 1380. (in Persian فارسی(
[11] R. B. Krieger, G. L. Borman, The computation of apparent heat releas for internal combustion engine, ASME Paper, No. 66-WA/NDGP-4, Proceedings of Diesel Gas Power,1996.
[12] W. T. Lyn, Study of burning rate and nature of combustion in diesel engine, 9th Symposium (International) on Combustion, Academic Press, New York, pp. 1069-1082, 1963.
[13] G. A. Karim, H. C. Watson, Experimental and computational consideration of the compression ignition of homogeneous fuel-oxidant mixtures, SAE Paper, No. 710133, 1971.
[14] A. Mozafari-Varnusfadrani, Predictions and Measurements of SparkIgnition Engine Characteristics Using Ammonia and other Fuels, PhD Thesis, Mechanical Eng. Dept., University of London, London, Fen. 1988
[15] W. J. D. Annand, Heat transfer in the cylinder of reciprocating internal combustion engines, Proceedings of the Institution of Mechanical Engineers, Vol. 177, No. 36, pp. 973-990, 1963.
[16] W. J. D. Annand, T. H. Ma, Instantaneous heat transfer rates to the cylinder head surface of a small compression-ignition engine, Proceedings of the Institution of Mechanical Engineers, Vol. 185, No. 72, pp. 976-987, 1970.
[17] G. Woschni, Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Paper,Vol. 76, No. 670931,pp.3065-3083, 1967.
[18] V. K. Rao, M. F. Bardon, Convective heat transfer in reciprocating engines, Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, Vol. 199, No. 3, pp. 221-226, 1985.
[19] R. S. Benson, N. D. Whitehouse, Internal Combustion Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development, Vol. 1, Pergamon Press, Oxford, pp. 210-235, 1979.
[20] C. H. Cheng, H. S. Yang, L. Keong, Theoretical and experimental study of a 300-w beta-type stirling engine, Energy, Vol. 59, No. 1, pp. 590-599, 2013.
[21] D. G. Thombare, S. K. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, Vol. 12, pp. 1-38, 2008.
[22] P. Puech, V. Tishkova, Thermodynamic analysis of a Stirling engine including regenerator dead volume, Renewable Energy, Vol. 36, issue 2, pp. 872-878, 2011.
[23] E. Rogdakis, G. Antonakos, I. Koronaki, Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit, Energy, Vol. 45, No. 1, pp. 503-511, 2012.
[24]A. Batooei, A. Keshavarz Valian, Thermal analysis and efficiency optimization of Otto-Stirling combined cycles with SI engine exhaust heat recovery, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 147-158, May 2016. (in Persianفارسی(