مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی سه‌بعدی انتقال حرارت و جرم در جریان آشفته دوغاب یخ در لوله‌های افقی

نویسندگان
1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس
2 استادیار، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس
3 استاد دانشگاه تربیت مدرس
چکیده
دوغاب یخ به ترکیبی از ذرات ریز یخ با سیال حمل کننده مایع مانند آب گفته می‌شود. توانایی تغییر فاز در این ترکیب سبب شده که در زمینه‌های ذخیره‌سازی دما و در بخش‌های مختلف تهویه به‌عنوان مبرد سرمایشی سیکل ثانویه به‌شدت مورد توجه محققین قرار بگیرد. در مطالعه حاضر جریان تغییر فاز دهنده دوغاب یخ در داخل لوله‌های افقی به‌صورت عددی و با استفاده از نرم‌افزار فلوئنت مورد بررسی قرارگرفته است. ماهیت دوفازی ترکیب دوغاب یخ با استفاده از مدل دوفازی اویلر-اویلر و بر پایه تئوری جنبشی جریان‌های دانه‌ای مورد بررسی قرارگرفته است. در این پژوهش اثر تغییر فاز ذرات یخ بر روی میزان حرارت و جرم مبادله شده بین فازی مورد بررسی قرار گرفته و افزایش 12 درصدی ضریب انتقال حرارت محلی برای استفاده از ترکیب دوغاب یخ نسبت به آب خالص تک‌فاز مشاهده شده است. هم‌چنین با بررسی میزان انتقال جرم و انتقال حرارت در طول لوله مشخص شده است که ضریب جابه‌جایی حرارتی در طولی از لوله که بزرگ‌تر از 10-15 برابر قطر لوله است، به صورت ثابت باقی می‌ماند. در حالی که تغییرات میزان جرم میانگین مبادله‌ ‌شده در طول 10 الی 15 برابر قطر لوله به بیشترین میزان ممکن (بین 2-5 برابر خروجی) رسیده و پس از آن کاهش می‌یابد ضمن آنکه که در 20 درصد انتهایی طول لوله، روند کاهشی سریع‌تر است.
کلیدواژه‌ها

عنوان مقاله English

3 D simulation of heat and mass transfer in turbulent flow of ice slurry in horizontal pipes

نویسندگان English

Hazhir Ahmadkermaj 1
Reza Maddahian 2
Mehdi Maerefat 3
1 MSc Student, Faculty of Mechanical Engineering, Tarbiat Modares University
3 Prof. Mechanical Eng.Trabiat Modares Uiversity
چکیده English

Ice slurry is called a mixture of fine ice particles with a fluid carrier such as water. The phase change ability of this mixture attracts the strong attention in the areas of thermal storage and refrigerant cooling of the secondary cycle. In this research, flow of ice slurry in horizontal tubes during the phase change is numerically investigated using FLUENT software. The two-phase nature of ice slurry mixture is studied using the Euler-Euler two-phase model based on kinetic theory of granular flows. The effect of ice particles phase change on heat and mass transfer between phases are investigated, the obtained results show that the local heat transfer coefficient for the use of the icy slurry mixture is increased 12% compare to the pure water. It is also determined by examining heat and mass transfer rate along tube, that the heat transfer coefficient for the pipe lengths larger than 10-15 times pipe diameter, remains constant. The variation of mean mass transfer is maximum at distance of 10-15 times of pipe diameter. The maximum value is 2-5 times larger than mean mass transfer in the pipe outlet. At the 20% end of the pipe, the decreasing trend of mass transfer accelerates.

کلیدواژه‌ها English

Phase change
Solid-liquid two phases flow
Heat Transfer
mass transfer
[1] A. Mosaffa, L. G. Farshi, C. I. Ferreira, M. Rosen, Advanced exergy analysis of an air conditioning system incorporating thermal energy storage, Energy, Vol. 77, No. 2, pp. 945-952, 2014.
[2] S. Sanaye, A. Fardad, M. Mostakhdemi, Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling, Energy, Vol. 36, No. 2, pp. 1057-1067, 2011
[3] G. Li, Y. Hwang, R. Radermacher, H. H. Chun, Review of cold storage materials for subzero applications, Energy, Vol. 51, No. 3, pp. 1-17, 2013.
[4] D. Vuarnoz, O. Sari, P. Egolf, H. Liardon, Ultrasonic velocity profiler UVPXW for ice-slurry flow characterisation, Proceeding of the Third International Symposium on Ultrasonic Doppler Method for Fluid Mechanics and Fluid Engineering, Lausanne, Switzerland, September 9-11, 2002.
[5] E. Stamatiou, M. Kawaji, Thermal and flow behavior of ice slurries in a vertical rectangular channel—Part II. Forced convective melting heat transfer, International Journal of Heat and Mass Transfer, Vol. 48, No. 17, pp. 3544- 3559, 2005.
[6] D. W. Lee, E. S. Yoon, M. C. Joo, A. Sharma, Heat transfer characteristics of the ice slurry at melting process in a tube flow, International Journal of Refrigeration, Vol. 29, No. 3, pp. 451-455, 2006.
[7] B. Niezgoda-Żelasko, Heat transfer of ice slurry flows in tubes, International Journal of Refrigeration, Vol. 29, No. 3, pp. 437-450, 2006.
[8] B. Niezgoda-Żelasko, J. Żelasko, Melting of ice slurry under forced convection conditions in tubes, Experimental Thermal and Fluid Science, Vol. 32, No. 8, pp. 1597-1608, 2008.
[9] M. Grozdek, R. Khodabandeh, P. Lundqvist, B. Palm, Å. Melinder, Experimental investigation of ice slurry heat transfer in horizontal tube, International Journal of Refrigeration, Vol. 32, No. 6, pp. 1310-1322, 2009.
[10] A. Kitanovski, A. Poredoš, Concentration distribution and viscosity of iceslurry in heterogeneous flow, International Journal of Refrigeration, Vol. 25, No. 6, pp. 827-835, 2002.
[11] M. Eesa, M. Barigou, CFD investigation of the pipe transport of coarse solids in laminar power law fluids, Chemical Engineering Science, Vol. 64, No. 2, pp. 322-333, 2009
[12] B. Niezgoda-Żelasko, W. Zalewski, Momentum transfer of ice slurry flows in tubes, modeling, International Journal of Refrigeration, Vol. 29, No. 3, pp. 429-436, 2006.
[13] J. Wang, S. Wang, T. Zhang, Y. Liang, Numerical investigation of ice slurry isothermal flow in various pipes, International Journal of Refrigeration, Vol. 36, No. 1, pp. 70-80, 2013.
[14] P. Zhang, X. Shi, Thermo-fluidic characteristics of ice slurry in horizontal circular pipes, International Journal of Heat and Mass Transfer, Vol. 89, No. 6, pp. 950-963, 2015
[15] C. Lun, S. B. Savage, D. Jeffrey, N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, Journal of Fluid Mechanics, Vol. 140, No. 8, pp. 223-256, 1984.
[16] K. Ekambara, R. S. Sanders, K. Nandakumar, J. H. Masliyah, Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX, Industrial & Engineering Chemistry Research, Vol. 48, No. 17, pp. 8159-8171, 2009.
[17] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, pp. 83-88, London: Academic press, 1994.
[18] A. Tomiyama, Drag, lift and virtual mass forces acting on a single bubble, Proceeding of the Third International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, September 22-25, 2004.
[19] M. R. Maxey, J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, The Physics of Fluids, Vol. 26, No. 4, pp. 883-889, 1983.
[20] A. D. Burns, T. Frank, I. Hamill, J. M. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, Proceeding of the 5th International Conference on Multiphase Flow, Yokohama, Japan, May 30 - June 4, 2004.
[21] B. Legawiec, D. Ziolkowski, Structure, voidage and effective thermal conductivity of solids within near-wall region of beds packed with spherical pellets in tubes, Chemical Engineering Science, Vol. 49, No. 15, pp. 2513- 2520, 1994.
[22] P. Zehner, E. Schlünder, Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen, Chemie Ingenieur Technik, Vol. 42, No. 14, pp. 933-941, 1970.
[23] D. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, International Journal of Heat and Mass Transfer, Vol. 21, No. 4, pp. 467- 476, 1978.
[24] B. E. Launder, D. B. Spalding, Mathematical Models of Turbulence, pp. 150- 178, London: Academic press, 1972.
[25] S. Ogawa, A. Umemura, N. Oshima, On the equations of fully fluidized granular materials, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 31, No. 4, pp. 483-493, 1980.
[26] P. C. Johnson, R. Jackson, Frictional–collisional constitutive relations for granular materials, with application to plane shearing, Journal of Fluid Mechanics, Vol. 176, No. 7, pp. 67-93, 1987.
[27] Å. Melinder, Properties and other aspects of aqueous solutions used for single phase and ice slurry applications, International Journal of Refrigeration, Vol. 33, No. 8, pp. 1506-1512, 2010.