[1] A. D. Ames, P. Tabuada, A. Jones, W. L. Ma, M. Rungger, B. Schürmann, S. Kolathaya, J. W. Grizzle, First steps toward formal controller synthesis for bipedal robots with experimental implementation, Nonlinear Analysis: Hybrid Systems, Vol. 25, pp. 155-173, 2017.
[2] K. A. Hamed, J. W. Grizzle, Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: Application to bipedal locomotion, Nonlinear Analysis: Hybrid Systems, Vol. 25, pp. 227-245, 2017.
[3] H. Sadeghian, C. Gianluca, O. Cheng, G. Gordon, Passivity-based control of underactuated biped robots within hybrid zero dynamics approach, IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 4096-4101, 2017.
[4] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, A. D. Ames, Models, feedback control, and open problems of 3D bipedal robotic walking, Automatica, Vol. 50, No. 8, pp. 1955-1988, 2014.
[5] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, pp. 45-135, Boca Raton, FL: CRC Press, 2007.
[6] M. M. Kakaei, H. Salarieh, A novel robust control method for three-link underactuated planar biped robot, Modares Mechanical Engineering, Vol. 17, No. 11, pp. 47-58, 2018. (in Persianفارسی(
[7] B. Beigzadeh, On Correlation of Dynamic Biped Locomotion and Dynamic Object Manipulation, Ph.D. Thesis, School of Mechanical Engineering, Sharif University of Technology, 2011.
[8] C. Chevallereau, Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, Vol. 19, No. 05, pp. 557-569, 2001.
[9] D. Djoudi, C. Chevallereau, Y. Aoustin, Optimal Reference Motions for Walking of a Biped Robot, ICRA Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona: IEEE, pp. 2002-2007, 2005.
[10] M. Hardt, K. Kreutz-Delgado, J. W. Helton, Optimal biped walking with a complete dynamical model, Proceedings of the 38th IEEE Conference on Decision and Control, Arizona: IEEE, pp. 2999-3004, 1999.
[11] V. S. E. Abadi, M. Rostami, S. M. A. Rahmati, S. Sadeghnejad, Walking path prevision of biped robot along with stability and optimization of power consumption in a single support phase, Modares Mechanical Engineering, Vol. 17, No. 11, pp. 1-11, 2018. (in Persianفارسی (
[12] M. Eslami, A. Y. Koma, M. Khadiv, A novel model based on the three-mass inverted pendulum for real-time walking pattern generation of biped robots, Modares Mechanical Engineering, Vol. 16, No. 8, pp. 326-334, 2016. (in ( فارسی Persian
[13] J. H. Barron-Zambrano, C. Torres-Huitzil, CPG Implementations for Robot Locomotion: Analysis and Design, A. Dutta (Eds.), Robotic Systems - Applications, Control and Programming, pp. 1-23, Croatia: InTech, 2012.
[14] J. Nassour, P. Hénaff, F. Benouezdou, G. Cheng, Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots, Biological Cybernetics, Vol. 108, No. 3, pp. 291-303, 2014.
[15] J. Yu, M. Tan, J. Chen, J. Zhang, A survey on CPG-inspired control models and system implementation, Neural Networks and Learning Systems, IEEE Transactions on, Vol. 25, No. 3, pp. 441-456, 2014.
[16] J. Zhang, X. Zhao, C. Qi, A Series Inspired CPG Model for Robot Walking Control, Machine Learning and Applications (ICMLA), 11th IEEE International Conference on, pp. 444-447, 2012.
[17] S. L. Hooper, Central Pattern Generators, D. J. Perkel (Eds.), Encyclopedia of Life Sciences, pp. 1-9, Chichester: John Wiley & Sons, Ltd, 2001.
[18] J. Cronin, R. Frost, R. Willgoss, Walking biped robot with distributed hierarchical control system, CIRA Proceedings of 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey: IEEE, pp. 150-156, 1999.
[19] T. Odashima, Z. Luo, S. Hosoe, Hierarchical control structure of a multilegged robot for environmental adaptive locomotion, Artificial Life and Robotics, Vol. 6, No. 1-2, pp. 44-51, 2002.
[20] P. Arena, L. Fortuna, M. Frasca, G. Sicurella, An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion, Vol. 34, No. 4, pp. 1823-1837, 2004.
[21] J. H. Barron-Zambrano, C. Torres-Huitzil, B. Girau, Perception-driven adaptive CPG-based locomotion for hexapod robots, Neurocomputing, Vol. 170, Supplement C, pp. 63-78, 2015.
[22] J. W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects, Automatic Control, IEEE Transactions on, Vol. 46, No. 1, pp. 51-64, 2001.
[23] E. R. Westervelt, J. W. Grizzle, D. E. Koditschek, Hybrid zero dynamics of planar biped walkers, Automatic Control, IEEE Transactions on, Vol. 48, No. 1, pp. 42-56, 2003.
[24] F. Verhulst, Methods and Applications of Singular Perturbations, pp. 93-120, New York, NY: Springer Science & Business Media, 2005.
[25] A. Isidori, Nonlinear Control Systems, pp. 165-172, London: Springer Science & Business Media, 1995.
[26] S. Chen, C. F. N. Cowan, P. M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Transactions on Neural Networks, Vol. 2, No. 2, pp. 302-309, 1991.
[27] D. Saad, On-Line Learning in Neural Networks, pp. 13-15, New York, NY: Cambridge University Press, 2009.
[28] L. N. Trefethen, D. Bau, Numerical Linear Algebra, pp 247-248, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997.