مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی تاثیر توابع پاششی مختلف در یک انژکتور مقطع حلقوی بر روی عملکرد موتور دیزل

نویسندگان
1 دانشگاه تبریز ایران
2 دانشگاه تبریز ایران - دانشکده مهندسی مکانیک تبریز
3 دانشگاه تبریز/دانشکده مکانیک
چکیده
یکی از راهکارهای بهبود عملکرد موتورهای دیزلی استفاده از آهنگ پاشش مناسب سوخت می‌باشد در این مقاله شش تابع پاشش سوخت مختلف انتخاب و اثر آن بر روی عملکرد موتور دیزل به روش عددی، با استفاده از نرم افزار فایر مورد بررسی قرار می‌گیرد. نتایج نشان می‌دهد انژکتور مقطع حلقوی با افزایش زاویه‌ی سوخت موجب توزیع مناسب آن در داخل محفظه احتراق موتور می‌شود. با استفاده از توابع پاششی مناسب سوخت، توان موتور افزایش و مقدار آلاینده‌های تولیدی آن کاهش می‌یابد. پاشش سوخت شبه مثلثی در مقایسه با نرخ پاشش ثابت دارای عملکرد مناسب‌تری می‌باشد و در این تابع مصرف سوخت ویژه تا 0.2043 kg/kJ کم می‌شود و این در حالی است که مقدار توان در این حالت تا 27.5% افزایش و مقدار اکسید نیتروژن اندکی افزایش می‌یابد. در تابع ثابت-کاهشی مقدار مصرف سوخت ویژه تا 0.2029 kg/kJ کاهش ولی در این حالت مقدار اکسید نیتروژن در مقایسه با تابع ثابت افزایش می‌یابد. تابع ثابت-افزایشی دارای توان تولیدی تقریبا برابر با تابع ثابت بوده ولی در این حالت مقدار اکسید نیتروژن تولیدی به مقدار مناسبی کاهش می‌یابد.
کلیدواژه‌ها

عنوان مقاله English

Numerical study on the effects of different injection patterns in an annulus injector on the performance of a diesel engine

نویسندگان English

rasool Esmaelnajad 1
Mohamad Tagi Shervani-Tabar 1
Moharram Jafari 2
seied esmaeel razavi 3
1 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
2 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
3 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
چکیده English

One of the important ways for improving performance of diesel engines is selecting of a proper and efficient fuel injection pattern. In this study six different patterns of fuel injection have been considered and performance of a diesel engine by using these patterns of fuel injection have been investigate numerically by employing AVL Fire. An annulus nozzle have been consider for the fuel injection system. It is expected that considering an annulus nozzle lead to increase of spry cone angle and proper distribution of the fuel inside the combustion chamber. Results show that employing proper and efficient patterns of fuel injection lead to increase of engine power and decrease of exhaust pollutants gases. Results also show that by employing a quasi-triangle fuel injection pattern, the diesel engine has better performance in competition with the case of using a constant fuel injection. It is found that by employing a quasi-triangle pattern of fuel injection, SFC reduces to 0.2043 kg/kJ, while the engine power increased by 27.5% and the magnitude of NO increases slightly. In the case of employing a constant-decreasing fuel injection pattern, the magnitude of SFC reduces to 0.2029kg/kJ whereas the magnitude of NO increases in comparison with the case of using constant fuel injection pattern. Numerical results show that by employing a constant-increasing pattern of fuel injection, the engine power is approximately equal to the engine’s power in the case of using a constant fuel injection pattern. But in this case the magnitude of NO reduces considerably.

کلیدواژه‌ها English

Annulus Injector
Injector spray function
Numerical methods
Diesel engine performance
[1] W. P. Willard, Engineering Fundamentals of the Internal Combustion Engine, Second Edittion, pp. 10-30, New Jersey, Editorial Prentice Hall, 2004.
[2] Y. Zhang, K. Nishida, S. Nomura, T. Ito, Spray characteristics of group-hole nozzle for DI diesel engine, SAE Technical Paper, No. 2003- 0148-7191, 2003.
[3] S. W. Park, H. K. Suh, C. S. Lee, N. Abani, R. D. Reitz, Modeling of group hole nozzle sprays using grid size, hole location and time step independent models, Atomization and Sprays, Vol. 19, No. 6, pp. 567-582, 2009.
[4] S. W. Park, R. D. Reitz, Optimization of fuel/air mixture formation for stoichiometric diesel combustion using a 2 spray angle group hole nozzle, Fuel, Vol. 88, No. 5, pp. 843-852, 2009.
[5] J. Gao, Y. Matsumoto, M. Namba, K. Nishida, An investigation of mixture formation and in-cylinder combustion processes in direct injection diesel engines using group-hole nozzles, International Journal of Engine Research, Vol. 10, No. 1, pp. 27-44, 2009.
[6] A. Pawlowski, R. Kneer, A. M. Lippert, S. E. Parrish, Investigation of the interaction of sprays from clustered orifices under ambient conditions relevant for diesel engines, SAE International Journal of Engines, Vol. 1, No. 2008-01-0928, pp. 514-527, 2008.
[7] J. Gao, Y. Matsumoto, K. Nishida, Experimental study on spray and mixture properties of the group-hole nozzle for direct-injection diesel engines, part I: a comparative analysis with the single-hole nozzle, Atomization and Sprays, Vol. 19, No. 4, pp. 321-337, 2009.
[8] K. Nishida, J. Gao, Y. Matsumoto, Experimental study on spray and mixture properties of the group-hole nozzle for direct-injection diesel engines, Part II: effects of included angle and interval between orifices, Atomization and Sprays, Vol. 19, No. 4, pp. 339-355, 2009.
[9] D. L. Siebers, B. Higgins, Flame lift-off on direct-injection diesel sprays under quiescent conditions, SAE Technical Paper, No. 2001-0148-7191, 2001.
[10] P. Bergstrand, M. Försth, I. Denbratt, The influence of orifice diameter on flame lift-off length, 18th Annual Conference on Liquid Atomization and Spray Systems, ILASS–Europe, Zaragoza, Spain, 9–11 September, 2002.
[11] H. Mohammadi, P. Jabbarzadeh, M. Jabbarzadeh, M. T. Shrevani-Tabar, Numerical investigation on the hydrodynamics of the internal flow and spray behavior of diesel fuel in a conical nozzle orifice with the spiral rifling like guides, Fuel, Vol. 196, pp. 419-430, 2017.
[12] P. Sharma, T. Fang, Breakup of liquid jets from non-circular orifices, Experiments in Fluids, Vol. 55, No. 2, pp. 1666, 2014.
[13] P. Sharma, T. Fang, Spray and atomization of a common rail fuel injector with non-circular orifices, Fuel, Vol. 153, pp. 416-430, 2015.
[14] M. Migliaccio, A. Montanaro, C. Beatrice, P. Napolitano, L. Allocca, V. Fraioli, Experimental and numerical analysis of a high-pressure outwardly opening hollow cone spray injector for automotive engines, Fuel, Vol. 196, pp. 508-519, 2017.
[15] F. Nishiguchi, Y. Sumi, K. Yamane, Reduction in the polar moment of inertia of an automotive turbocharger by controlling aerodynamic blade loading, Proceedings of Turbocharging and Turbochargers, London, England, paper C, Vol. 34, pp. 123-127, 1982.
[16] K. Pattas, A. Stamatelos, Transient behaviour of turbocharged-engined vehicles equipped with diesel particulate traps, SAE Technical Paper, No. 1992-0148-7191, 1992.
[17] C. S. Lee, N. J. Choi, A study on the characteristics of transient response in a turbocharged diesel engine, SAE Technical Paper, No. 1991-912461, 1991.
[18] C. S. Lee, N. J. Choi, Effect of air injection on the characteristics of transient response in a turbocharged diesel engine, International Journal of Thermal Sciences, Vol. 41, No. 1, pp. 63-71, 2002.
[19] K. Nishida, W. Zhang, T. Manabe, Effects of micro-hole and ultra-high injection pressure on mixture properties of DI diesel spray, SAE Technical Paper, No. 2007-0148-7191, 2007.
[20] I. Celıkten, An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines, Applied Thermal Engineering, Vol. 23, No. 16, pp. 2051- 2060, 2003.
[21] W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine, Second Edittion, pp. 52-201, Cambridge, Prentice-Hall, Engle-wood Cliffs Pearson, 2003.
[22] P. Das, P. Subbarao, J. Subrahmanyam, Control of combustion process in an HCCI-DI combustion engine using dual injection strategy with EGR, Fuel, Vol. 159, pp. 580-589, 2015.
[23] M. Jeftić, M. Zheng, A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies, Applied Energy, Vol. 157, pp. 861-870, 2015.
[24] S. H. Park, S. H. Yoon, Injection strategy for simultaneous reduction of NO x and soot emissions using two-stage injection in DME fueled engine, Applied Energy, Vol. 143, pp. 262-270, 2015.
[25] V. Macian, R. Payri, S. Ruiz, M. Bardi, A. H. Plazas, Experimental study of the relationship between injection rate shape and Diesel ignition using a novel piezo-actuated direct-acting injector, Applied Energy, Vol. 118, pp. 100-113, 2014.
[26] B. Mohan, W. Yang, W. Yu, K. L. Tay, S. K. Chou, Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine, Applied Energy, Vol. 160, pp. 737-745, 2015.
[27] K. L. Tay, W. Yang, F. Zhao, W. Yu, B. Mohan, A numerical study on the effects of boot injection rate-shapes on the combustion and emissions of a kerosene-diesel fueled direct injection compression ignition engine, Fuel, Vol. 203, pp. 430-444, 2017.
[28] Z. Wang, M. L. Wyszynski, H. Xu, N. R. Abdullah, J. Piaszyk, Fuel injection and combustion study by the combination of mass flow rate and heat release rate with single and multiple injection strategies, Fuel Processing Technology, Vol. 132, pp. 118-132, 2015.
[29] M. Özkan, D. B. Özkan, O. Özener, H. Yılmaz, Experimental study on energy and exergy analyses of a diesel engine performed with multiple injection strategies: Effect of pre-injection timing, Applied Thermal Engineering, Vol. 53, No. 1, pp. 21-30, 2013.
[30] H. G. Roh, D. Lee, C. S. Lee, Impact of DME-biodiesel, diesel-biodiesel and diesel fuels on the combustion and emission reduction characteristics of a CI engine according to pilot and single injection strategies, Journal of the Energy Institute, Vol. 88, No. 4, pp. 376-385, 2015.
[31] J. Benajes, S. Molina, A. García, J. Monsalve-Serrano, R. Durrett, Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept, Applied Energy, Vol. 134, pp. 90-101, 2014.
[32] J. Jeon, S. Park, Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel, Applied Energy, Vol. 160, pp. 581-591, 2015.
[33] AVL FIRE Manual, Part: Spray, V 2013.
[34] B. Ahmadi-Befrui, A. Gosman, F. Lockwood, A. Watkins, Multidimensional calculation of combustion in an idealised homogeneous charge engine: a progress report, SAE Technical Paper, No. 1981-0148-7191, 1981.
[35] K. Nishida, H. Hiroyasu, Simplified three-dimensional modeling of mixture formation and combustion in a DI diesel engine, SAE Technical Paper, No. 1989-0148-7191, 1989.
[36] J. K. Dukowicz, A particle-fluid numerical model for liquid sprays, Journal of Computational Physics, Vol. 35, No. 2, pp. 229-253, 1980.
[37]M. M. Naghizadeh, A. R. Ghahremani, M. H. Saidi, Numerical simulation of spray characteristics of bio-ethanol and its blend with gasoline in a direct injection combustion chamber, Modares Mechanical Engineering, Vol. 15, No. 4, pp. 112-122, 2015. (in Persian فارسی(
[38]S. Sarmast, A .H. Shamekhi, M. Z. Basharhagh, A. H. Parivar, The Effect of Injector Angle and Start of Injection on Spray-Wall Interaction in Gasoline Direct Injection Engine, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 95-105, 2017. (in Persian فارسی(
[39] N. Hassan, M. Rasul, C. A. Harch, Modelling and experimental investigation of engine performance and emissions fuelled with biodiesel produced from Australian Beauty Leaf Tree, Fuel, Vol. 150, pp. 625-635, 2015