[1] A. Erturk, D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures, Vol. 18, No. 2, pp. 25009, Feb. 2009.
[2] J. Baker, S. Roundy, P. Wright, Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks, 3rd International Energy Conversion Engineering Conference, pp. 1–12. , August 2005.
[3] M. Rosa, C. De Marqui Junior, Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area, Shock and Vibration, Vol. 2014, No. 1, pp. 1–9, 2014.
[4] S. P. Matova, M. Renaud, M. Jambunathan, M. Goedbloed, R. Van Schaijk, Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters, Smart Materials and Structures, Vol. 22, No. 7, pp. 75015, Jul. 2013.
[5] J. Park, S. Lee, B. M. Kwak, Design optimization of piezoelectric energy harvester subject to tip excitation, Journal of Mechanical Science and Technology, Vol. 26, No. 1, pp. 137–143, Jan. 2012.
[6] J. M. Dietl, E. Garcia, Beam Shape optimization for power harvesting, Journal of Intelligent Material Systems and Structures, Vol. 21, No. 6, pp. 633–646, Mar. 2010.
[7] D. Benasciutti, L. Moro, S. Zelenika, E. Brusa, Vibration energy scavenging via piezoelectric bimorphs of optimized shapes, Microsystem Technologies, Vol. 16, No. 5, pp. 657–668, Dec. 2009.
[8] M. F. Mateu, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts, Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 835–845, Oct. 2005.
[9] M. Asgharzadeh, K. Jahani, A. Kianpoor, M. Sadeghi, Energy harvesting investigation from unimorph trapezoidal beam vibrations using distributed parameters method, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 96–102, 2015.
[10] H. Salmani, G. H. Rahimi, S. A. Hosseini Kordkheili, An exact analytical solution to exponentially tapered piezoelectric energy harvester, Shock and Vibration, Vol. 2015, No. 1, pp. 1–13, 2015.
[11] U. Von Wagner, P. Hagedorn, Piezo–beam systems subjected to weak electric field: experiments and modelling of non-linearities, Journal of Sound and Vibration, Vol. 256, No. 5, pp. 861–872, 2002.
[12] M. Arafa, A. Baz, On the nonlinear behavior of piezoelectric actuators, Journal of Vibration and Control, Vol. 10, No. 3, pp. 387–398, 2004.
[13] M. F. Daqaq, C. Stabler, Y. Qaroush, T. Seuaciuc-Osorio, Investigation of power harvesting via parametric excitations, Journal of Intelligent Material Systems and Structures, Vol. 20, No. 5, pp. 545–557, 2008.
[14] S. C. Stanton, A. Erturk, B. P. Mann, D. J. Inman, “Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators, Applied Physics Letters, Vol. 97, No. 25, pp. 254101, 2010.
[15] S. C. Stanton, A. Erturk, B. P. Mann, D. J. Inman, Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification, Journal of Applied Physics, Vol. 108, No. 7, pp. 1–9, 2010.
[16] R. Masana, M. F. Daqaq, Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters, Journal of Vibration and Acoustics, Vol. 133, No.1, February 2011, p. 11007, 2011.
[17] A. Abdelkefi, A. H. Nayfeh, M. R. Hajj, Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation, Nonlinear Dynamics, Vol. 67, No. 2, pp. 1221–1232, 2012.
[18] A. Abdelkefi, A. H. Nayfeh, M. R. Hajj, Global nonlinear distributedparameter model of parametrically excited piezoelectric energy harvesters, Nonlinear Dynamics, Vol. 67, No. 2, pp. 1147–1160, 2012.
[19] S. C. Stanton, a. Erturk, B. P. Mann, E. H. Dowell, D. J. Inman, Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects, Journal of Intelligent Material Systems and Structures, Vol. 23, No. 2, pp. 183–199, 2012.
[20] S. Leadenham, A. Erturk, Global nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation, Active and Passive Smart Structures and Integrated Systems, Vol. 9057, No. 1, pp. 905702, 2014
[21] A. Garg, S. K. Dwivedy, Nonlinear dynamics of axially loaded piezoelectric energy harvester, Procedia Engineering, Vol. 144, No.1, pp. 592–599, 2016.
[22] C. J. Silva, M. F. Daqaq, Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation, Journal of Sound and Vibration, Vol. 389, No.1, pp. 438-453, 2016.
[23] Ali H. Nayfeh, P. F. Pai, Linear and Nonlinear Structural Mechanics, WileyVCH, pp. 183-226, 2004
[24] M. Arefi, A. M. Zenkour, Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams, Applied Physics A: Materials Science & Processing, Vol. 123, No. 3, pp. 0, 2017.
[25] M. Arefi, A. M. Zenkour, Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam, Journal of Sandwich Structures & Materials, 2017.
[26] K. Jahani, P. Aghazadeh, Investigating the performance of piezoelectric energy harvester including geometrical, damping and material nonlinearities with the method of multiple scales, Modares Mechanical Engineering, Vol. 16, No. 4, pp. 354–360, 2016.