مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی اثر تغییرات نمایی سطح مقطع بر ولتاژ خروجی برداشت کننده انرژی پیزوالکتریک با غیرخطینگی هندسی، اینرسی، ماده و میرایی

نویسندگان
1 دانشکده مهندسی هوافضا ، دانشگاه تربیت مدرس، تهران، ایران
2 استاد دانشگاه تربیت مدرس، هیأت علمی
چکیده
در این مقاله روابط الکترومکانیکی غیرخطی تیر برداشت کننده انرژی پیزوالکتریک با مقطع متغیر نمایی ارائه شده است تا تاثیر متغیر نمودن مقطع تیر پیزوالکتریک با تابع نمایی در استخراج توان بیشتر با وزن کمتر از برداشت کننده انرژی بررسی شود. بدین منظور غیرخطینگی‌های ماده، میرایی، اینرسی و هندسی در نظر گرفته شده است. در بدست آوردن معادلات حرکت فرضیه اویلر برنولی و تغییرات خطی ولتاژ در جهت ضخامت مد نظر گرفته شده است. معادلات حاکم با شکل مودهای متعامد تیر پیزوالکتریک با مقطع متغیر نمایی بهمراه جرم نوک جداسازی شده است. معادلات دیفرانسیل غیرخطی و کوپل حاکم با استفاده از روش مقیاس‌های چندگانه حل شده‌اند. ضریب میرایی تیر با استخراج تابع پاسخ فرکانسی شتاب نوک تیر به شتاب تحریک پایه از آزمایشی مناسب در حالت خطی و مدار اتصال کوتاه محاسبه شده است. برای شناسایی ضرایب غیرخطی ماده و صحه‌گذاری نتایج، شتاب تحریک شیکر افزوده شده است و در نتیجه آن دقت معادلات توسعه یافته مورد تایید قرار گرفته است. بمنظور بررسی اثر متغیر نمودن مقطع تیر بصورت نمایی در کارآیی برداشت کننده انرژی پیزوالکتریک، تاثیر طول، ضریب باریک شوندگی و شتاب تحریک مورد بررسی قرار گرفته است.
کلیدواژه‌ها

عنوان مقاله English

Investigation of the exponentially tapering effect on the behavior of piezoelectric energy harvester including geometric, inertial, material and damping nonlinearities

نویسندگان English

Hamed Salmani 1
G. H. Rahimi 2
1 Department of Aerospace Engineering, Tarbiat Modares University, Tehran, Iran.
2 Tarbiat Modarres Univ
چکیده English

In this paper, the nonlinear electromechanical formulations of a piezoelectric energy harvester are proposed to investigate the effect of exponential tapering on generating more power with less mass from energy harvester. For this purpose, geometric, inertial, material and damping nonlinearities are included. The governing equations are derived using the Euler-Bernoulli and linear variation of electric voltage along the thickness assumptions. The coupled nonlinear equations are discretized by the mass normalized mode shapes of an exponentially tapered piezoelectric beam with tip mass, and resulting differential equations are solved employing the method of multiple scales. An experiment is set up, and the damping coefficient of the beam is calculated from the tip acceleration to base acceleration frequency response function in the case of low exciting acceleration and short circuit. Material nonlinear coefficients are identified using the experiment, when the exciting acceleration of the shaker is increased, and the proposed solution accuracy is verified. The effect of tapering exponentially on the behavior of the piezoelectric energy harvester is investigated by studying length, tapering parameter and exciting acceleration amplitude in some examples.

کلیدواژه‌ها English

Piezoelectric
Energy harvesting
exponential tapering
nonlinear
experimental method
[1] A. Erturk, D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures, Vol. 18, No. 2, pp. 25009, Feb. 2009.
[2] J. Baker, S. Roundy, P. Wright, Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks, 3rd International Energy Conversion Engineering Conference, pp. 1–12. , August 2005.
[3] M. Rosa, C. De Marqui Junior, Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area, Shock and Vibration, Vol. 2014, No. 1, pp. 1–9, 2014.
[4] S. P. Matova, M. Renaud, M. Jambunathan, M. Goedbloed, R. Van Schaijk, Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters, Smart Materials and Structures, Vol. 22, No. 7, pp. 75015, Jul. 2013.
[5] J. Park, S. Lee, B. M. Kwak, Design optimization of piezoelectric energy harvester subject to tip excitation, Journal of Mechanical Science and Technology, Vol. 26, No. 1, pp. 137–143, Jan. 2012.
[6] J. M. Dietl, E. Garcia, Beam Shape optimization for power harvesting, Journal of Intelligent Material Systems and Structures, Vol. 21, No. 6, pp. 633–646, Mar. 2010.
[7] D. Benasciutti, L. Moro, S. Zelenika, E. Brusa, Vibration energy scavenging via piezoelectric bimorphs of optimized shapes, Microsystem Technologies, Vol. 16, No. 5, pp. 657–668, Dec. 2009.
[8] M. F. Mateu, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts, Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 835–845, Oct. 2005.
[9] M. Asgharzadeh, K. Jahani, A. Kianpoor, M. Sadeghi, Energy harvesting investigation from unimorph trapezoidal beam vibrations using distributed parameters method, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 96–102, 2015.
[10] H. Salmani, G. H. Rahimi, S. A. Hosseini Kordkheili, An exact analytical solution to exponentially tapered piezoelectric energy harvester, Shock and Vibration, Vol. 2015, No. 1, pp. 1–13, 2015.
[11] U. Von Wagner, P. Hagedorn, Piezo–beam systems subjected to weak electric field: experiments and modelling of non-linearities, Journal of Sound and Vibration, Vol. 256, No. 5, pp. 861–872, 2002.
[12] M. Arafa, A. Baz, On the nonlinear behavior of piezoelectric actuators, Journal of Vibration and Control, Vol. 10, No. 3, pp. 387–398, 2004.
[13] M. F. Daqaq, C. Stabler, Y. Qaroush, T. Seuaciuc-Osorio, Investigation of power harvesting via parametric excitations, Journal of Intelligent Material Systems and Structures, Vol. 20, No. 5, pp. 545–557, 2008.
[14] S. C. Stanton, A. Erturk, B. P. Mann, D. J. Inman, “Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators, Applied Physics Letters, Vol. 97, No. 25, pp. 254101, 2010.
[15] S. C. Stanton, A. Erturk, B. P. Mann, D. J. Inman, Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification, Journal of Applied Physics, Vol. 108, No. 7, pp. 1–9, 2010.
[16] R. Masana, M. F. Daqaq, Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters, Journal of Vibration and Acoustics, Vol. 133, No.1, February 2011, p. 11007, 2011.
[17] A. Abdelkefi, A. H. Nayfeh, M. R. Hajj, Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation, Nonlinear Dynamics, Vol. 67, No. 2, pp. 1221–1232, 2012.
[18] A. Abdelkefi, A. H. Nayfeh, M. R. Hajj, Global nonlinear distributedparameter model of parametrically excited piezoelectric energy harvesters, Nonlinear Dynamics, Vol. 67, No. 2, pp. 1147–1160, 2012.
[19] S. C. Stanton, a. Erturk, B. P. Mann, E. H. Dowell, D. J. Inman, Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects, Journal of Intelligent Material Systems and Structures, Vol. 23, No. 2, pp. 183–199, 2012.
[20] S. Leadenham, A. Erturk, Global nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation, Active and Passive Smart Structures and Integrated Systems, Vol. 9057, No. 1, pp. 905702, 2014
[21] A. Garg, S. K. Dwivedy, Nonlinear dynamics of axially loaded piezoelectric energy harvester, Procedia Engineering, Vol. 144, No.1, pp. 592–599, 2016.
[22] C. J. Silva, M. F. Daqaq, Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation, Journal of Sound and Vibration, Vol. 389, No.1, pp. 438-453, 2016.
[23] Ali H. Nayfeh, P. F. Pai, Linear and Nonlinear Structural Mechanics, WileyVCH, pp. 183-226, 2004
[24] M. Arefi, A. M. Zenkour, Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams, Applied Physics A: Materials Science & Processing, Vol. 123, No. 3, pp. 0, 2017.
[25] M. Arefi, A. M. Zenkour, Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam, Journal of Sandwich Structures & Materials, 2017.
[26] K. Jahani, P. Aghazadeh, Investigating the performance of piezoelectric energy harvester including geometrical, damping and material nonlinearities with the method of multiple scales, Modares Mechanical Engineering, Vol. 16, No. 4, pp. 354–360, 2016.