مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه عددی تأثیر ضریب نرخ دمش گاز بر مشخصات کاویتی در جریان سوپرکاویتاسیون گازدهی شده

نویسندگان
1 گروه مکانیک دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد
2 استاد عضو هیئت علمی دانشگاه فردوسی مشهد
چکیده
در این مقاله جریان سوپرکاویتاسیون گازدهی شده بر روی یک مدل پرتابه‌ای در شرایط پایدار با استفاده از روش دینامیک سیالات محاسباتی در نرم افزار تجاری سی اف ایکس و بکارگیری مدل آشفتگی کی-اُمگا اس-اس-تی و تکنیک حجم سیال به صورت سه‌بعدی شبیه سازی شده است. به منظور صحت سنجی مدل عددی، ابعاد کاویتی گازدهی شده حاصل از نتایج شبیه‌سازی با داده‌های آزمایشگاهی موجود، مقایسه و دقت حل عددی مشخص شده است. نتایج عددی نشان می‌دهد که در یک عدد فرود ثابت و با افزایش ضریب نرخ دمش گاز، ابعاد کاویتی گازدهی شده در ابتدا افزایش یافته و پس از رسیدن به یک مقدار بحرانی تقریباً ثابت می‌ماند. همچنین مشاهده شده است که در کاویتی‌های بزرگتر، اثر نیروی جاذبه موجب انحراف قسمت انتهایی کاویتی به سمت بالا می‌شود. نتایج نشان می‌دهد که با افزایش ضریب نرخ دمش گاز، الگوی خروج گاز از انتهای کاویتی از حالت جت بازگشتی به حالت گردابه دوقلو تبدیل می‌شود. تغییرات ضریب نرخ دمش گاز بر حسب طول کاویتی تابعی از عدد فرود جریان کاویتاسیونی بوده و مقدار بحرانی ضریب نرخ دمش گاز بر حسب عدد فرود جریان به‌صورت خطی افزایش پیدا می‌کند.
کلیدواژه‌ها

عنوان مقاله English

Numerical study of gas rate coefficient effect on ventilated supercavitating flow specifications

نویسنده English

Mohammad-Reza Erfanian 1
1 Mechanic department, Engineering faculty, ferdowsi university of mashhad, Mashhad
چکیده English

In this paper, the three dimensional ventilated cavitating flow in the steady condition around a projectile model is simulated using CFD method combined with a sst k-ω turbulence model and volume-of-fluid technique, With the aid of CFD software ANSYS CFX. The numerical model is validated using comparisons between numerical predictions and existing experimental data and fairly good agreement is revealed. The numerical results show that with increasing the ventilation gas rate at constant Froude number, the cavity length gradually increases to a critical value and then remains fixed upon further increase in gas ventilation rate. Also, it has been observed that rear portion of larger cavity moves upwards due to gravitational effect. With increasing the ventilation gas rate, the gas leakage mechanism at rear portion of ventilated supercavity changes from the re-entrant jet closure mode to twin vortex closure mode. The variation of ventilation gas rate versus cavity length is a function of Froude number and the critical ventilation gas rate increases linearly with Froude number.

کلیدواژه‌ها English

Two phase flow
Ventilated supercavitation
Gas leakage mechanism
Ventilated gas rate coefficient
Cavity Length
[1] F. R. Young, Cavitation, 1th Edittion, pp. 10-21, Watford College, Imperial College Press, 1999.
[2] R. F. Kunz, D. A. Boger, T. S. Chyczewski, D. Stinebring, H. Gibeling, T. Govindan, Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies, Proceedings of the 3rd ASME-JSME Joint Fluids Engineering Conference, San Francisco, California, july 1999.
[3] M. Maerefat, S. Tahmasebi, M. R. Ansari, Numerical Simulation of Supercavitatingflowandcalculation of cavity length around submersible vehicle, Modares Mechanical Engineering Vol.15, No. 8, pp. 187-196, 2015. (فارسی InPersian(
[4] E. Amromin, G. Karafiath, B. Metcalf, Ship drag reduction by air bottom ventilated cavitation in calm water and in waves, Journal of Ship Research, Vol. 55, No. 3, pp. 196-207, 2011.
[5] E. Amromin, J. Kopriva, R. E. Arndt, M. Wosnik, Hydrofoil drag reduction by partial cavitation, Journal of Fluids Engineering, Vol. 128, No. 5, pp. 931-936, 2006.
[6] L. Epshtein, Characteristics of ventilated cavities and some scale effects, unsteady water flow with high velocities, Proceedings of International Symposium IUTAM, Moscow, Russia, 1973.
[7] S. L. Ceccio, Friction drag reduction of external flows with bubble and gas injection, Annual Review of Fluid Mechanics, Vol. 42, pp. 183-203, 2010.
[8] J. Bin, X. W. Luo, X. X. Peng, Y. Zhang, Y. L. Wu, H. Y. Xu, Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavitation model, Journal of Hydrodynamics, Ser. B, Vol. 22, No. 6, pp. 753-759, 2010.
[9] S. Park, S. H. Rhee, Computational analysis of turbulent super-cavitating flow around a two-dimensional wedge-shaped cavitator geometry, Computers & Fluids, Vol. 70, pp. 73-85, 2012.
[10] Z. Shang, Numerical investigations of supercavitation around blunt bodies of submarine shape, Applied Mathematical Modelling, Vol. 37, No. 20–21, pp. 8836-8845, 2013.
[11] M. Morgut, E. Nobile, I. Biluš, Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil, International Journal of Multiphase Flow, Vol. 37, No. 6, pp. 620-626, 2011.
[12] S. J. Schmidt, I. H. Sezal, G. H. Schnerr, Compressible simulation of highspeed hydrodynamics with phase change, Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 2006.
[13] G. H. Schnerr, S. J. Schmidt, I. H. Sezal, M. Thalhamer, Shock and wave dynamics of compressible liquid flows with special emphasis on unsteady load on hydrofoils and cavitation in injection nozzles, Proceedings of The 6th International Symposium on Cavitation, Wageningen, Netherlands, september 2006.
[14] L. P. JIA, W. Cong, Y. J. Wei, H. B. Wang, J. Z. Zhang, K. P. Yu, Numerical simulation of artificial ventilated cavity, Journal of Hydrodynamics, Ser. B, Vol. 18, No. 3, pp. 273-279, 2006.
[15] X. W. Zhang, Y. J. Wei, J. Z. Zhang, W. Cong, K. P. Yu, Experimental research on the shape characters of natural and ventilated supercavitation, Journal of Hydrodynamics, Ser. B, Vol. 19, No. 5, pp. 564-571, 2007.
[16] J. H. Guo, C.J. Lu, Y. Chen, Characteristics of flow field around an underwater projectile with natural and ventilated cavitation, Journal of Shanghai Jiaotong University (Science), Vol. 16, No. 2, pp. 236-241, 2011.
[17] G. H. Gao, J. Zhao, F. Ma, W. D. Luo, Numerical study on ventilated supercavitation reaction to gas supply rate, Advanced Materials Research, Vols 418-420, pp. 1781-1785, 2012.
[18] Z. Wang, B. Huang, G. Wang, M. Zhang, F. Wang, Experimental and numerical investigation of ventilated cavitating flow with special emphasis on gas leakage behavior and re-entrant jet dynamics, Ocean Engineering, Vol. 108, pp. 191-201, 2015.
[19] B. Ji, X. Luo, Y. Wu, X. Peng, Y. Duan, Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil, International Journal of Multiphase Flow, Vol. 51, pp. 33- 43, 2013.
[20] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994.
[21] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method: Second Edittion, pp. 271-315 , Pearson Education Limited, 2007.
[22] P. Huang, Physics and Computations of Flows with Adverse Pressure Gradients, Modeling Complex Turbulent Flows, Vol. 7, pp. 245-258, 1999.
[23] M. Ghaffari, M. Pasandideh Fard, M. Tabaki, Simulation of flow around axisymmetric projectiles with circular cavitator and ringed tip using control volume and boundary elementmethods, Modares Mechanical Engineering Vol. 16, No. 12, pp. 67-78, 2016 (in Persian).
[24] P. Garabedian, Calculation of axially symmetric cavities and jets, Pacifi Journal of Mathematics, Vol. 6, No. 4, pp. 611-684, 1956.
[25] J. P. Franc, J. M. Michel, Fundamentals of cavitation, 1th Edittion, pp. 311- 315, Springer science & Business media, 2005.
[26] E. Kawakami, R. E. Arndt, Investigation of the behavior of ventilated supercavities, Journal of Fluids Engineering, Vol. 133, No. 9, pp. 091305, 2011.
[27] A. Karn, R. E. A. Arndt, J. Hong, Gas entrainment behaviors in the formation and collapse of a ventilated supercavity, Experimental Thermal and Fluid Science, Vol. 79, pp. 294-300, 2016.