مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل مقاوم ربات زیرآبی با جهت‌گیری پتانسیلی برای تعقیب مسیر در حضور موانع

نویسندگان
1 مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران
2 استاد دانشگاه خواجه نصیرالدین طوسی
3 استادیار دانشگاه خوارزمی
چکیده
در این مقاله، یک کنترل‌کننده جدید بر مبنای ترکیب کنترل‌کننده خطی‌ساز فیدبک مقاوم با دینامیک خطای انتگرالی-نمایی ارائه شده است، که با استفاده از توابع پتانسیل برای کنترل ردیابی ربات زیرآبی در محیط‌های پرمانع توسعه داده می شود. ربات‌های زیرآبی از جمله سیستم‌های غیرخطی، کم‌عملگر و دارای عدم قطعیت‌‌ها و نامعینی‌های دینامیکی به شمار می‌آیند که کنترل آن‌ها چالش برانگیز است. در این پژوهش با کراندار فرض کردن اغتشاشات خارجی و نامعینی‌ها از روش کنترلی مقاوم پیشنهادی استفاده گردیده است. در این راستا الگوریتم کنترلی خطی‌ساز فیدبک بر اساس دینامیک خطای غیرخطی تعریف شده، برای ربات زیرآبی توسعه داده شده است. همچنین، به‌منظور اجتناب از برخورد با موانع قوانین کنترلی به‌دست آمده با توابع پتانسیل مجازی تلفیق گردیده است. بدین منظور، با تعریف توابع پتانسیل مجازی، نیروی دافعه‌ای بین ربات و موانع در تقاطع با مسیر ایجاد و موجب حرکت ایمن ربات در محیط‌های غنی از موانع می‌گردد. در‌نهایت، عملکرد الگوریتم کنترلی پیشنهادی با نتایج حاصل از پیاده‌سازی قوانین کنترلی مود لغزشی کلاسیک مقایسه شده است. نتایج حاصله نشان‌دهنده کارآیی کنترل‌کننده پیشنهادی با جهت‌گیری پتانسیلی در مسیرهای پرمانع می‌باشد که از عملکرد مطلوب‌تری نیز در صورت مواجه‌شدن با موانع برخوردار است.
کلیدواژه‌ها

عنوان مقاله English

Potentially Directed Robust Control of an Underwater Robot in the Presence of Obstacles

نویسندگان English

Fahimeh S. Tabataba’i-Nasab 1
Ali Keymasi Khalaji 3
1 Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
3 Assistant Professor, Kharazmi University
چکیده English

In this paper, a new controller is presented based on robust feedback linearization controller in combination with integral-exponential error dynamics and potential functions for tracking control of an underwater robot in an obstacle-rich environment. Underwater robots are considered as nonlinear, underactuated systems with indefinite, uncertain dynamics. In this research, by assuming a boundary for external disturbances and uncertainties a proposed robust control method has been put to use. Along with the robust feedback linearization algorithm which has been developed based on the dynamics of the nonlinear error defined for the underwater robot, and in order to avoid the obstacles, the control laws are combined with the virtual potential functions. The considered virtual potential functions make a repulsive force between the robot and the obstacles which intersect the desired path and then they bring about a safe move of the robot in obstacle-rich environments. Finally, the performance of the proposed new control algorithm is compared with the results of the implementation of classical sliding mode control laws. The results show the effectiveness of potentially directed proposed controller through obstacle-rich paths which operate far better facing obstacles.

کلیدواژه‌ها English

"Underwater Robot"
"Robust Feedback Linearization Controller"
"Sliding Mode Controller"
"Potential Function"
[1] A. Karimi, R. Hasanzadeh Ghasemi, Equipping of a hovering type autonomous underwater vehicle with ballast tanks and its effect on degrees of freedom, Modares Mechanical Engineering, Vol. 17, No. 7, pp. 397-404, 2017. (in Persian فارسی (
[2] H. Ashrafiuon, K. R. Muske, L. C. McNinch, and R. A. Soltan, Sliding-mode tracking control of surface vessels, IEEE Transactions on Industrial Electronics, Vol. 55, No. 11, pp. 4004-4012, 2008.
[3] L. Wang, L. J. Zhang, H. M. Jia, H. B. Wang, Horizontal tracking control for AUV based on nonlinear sliding mode, in Information and Automation (ICIA), International Conference on, pp. 460-463, 2012.
[4] H. Joe, M. Kim, S. C. Yu, Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances, Nonlinear Dynamics, Vol. 78, No. 1, pp. 183-196, 2014.
[5] T. Elmokadem, M. Zribi, K. Youcef-Toumi, Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles, Ocean Engineering, Vol. 129, pp. 613-625, 10.1016/j.oceaneng.2016.10.032, 2017.
[6] Y. Chen, R. Zhang, X. Zhao, J. Gao, Adaptive fuzzy inverse trajectory tracking control of underactuated underwater vehicle with uncertainties, Ocean Engineering, Vol. 121, pp. 123-133, 10.1016/j.oceaneng.2016.05.034, 2016.
[7] K. D. Do, J. Pan, Z. Jiang, Robust and adaptive path following for underactuated autonomous underwater vehicles, Ocean Engineering, Vol. 31, No. 16, pp. 1967-1997, 2004.
[8] J.-S. Wang, C. G. Lee, Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle, IEEE Transactions on Robotics and Automation, Vol. 19, No. 2, pp. 283-295, 2003.
[9] B. K. Sahu, B. Subudhi, Adaptive tracking control of an autonomous underwater vehicle, International Journal of Automation and Computing, Vol. 11, No. 3, pp. 299-307, 2014.
[10] E. Sebastián, M. A. Sotelo, Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle, Journal of Intelligent & Robotic Systems, Vol. 49, No. 2, pp. 189-215, 2007.
[11] J. S. Wang, C. G. Lee, Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle, IEEE Transactions on Robotics and Automation, Vol. 19, No. 2, pp. 283-295, 2003.
[12] J. Yuh, A neural net controller for underwater robotic vehicles, IEEE Journal of Oceanic Engineering, Vol. 15, No. 3, pp. 161-166, 1990.
[13] X. Liang, L. Wan, J. I. Blake, R. A. Shenoi, N. Townsend, Path following of an underactuated AUV based on fuzzy backstepping sliding mode control, International Journal of Advanced Robotic Systems, Vol. 13, No. 3, pp. 122, 2016.
[14] H. Delavari, H. Heydarinejad, Adaptive fractional order Backstepping sliding mode controller design for a magnetic levitation system, Modares Mechanical Engineering, Vol. 17, No. 3, pp. 187-195, 2017. (in (فارسی P‏ersian
[15] Y. Nikoo, B. Rezaie, Z. Rahmani, Designing an intelligent finite-time terminal sliding mode controller with application to atomic force microscope, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 269-279, 2016. (in (فارسی Persian
[16] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, The International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, 1986.
[17] D. Gu, H. Hu, Using fuzzy logic to design separation function in flocking algorithms, IEEE Transactions on Fuzzy Systems, Vol. 16, No. 4, pp. 826- 838, 2008.
[18] D. Gu, Z. Wang, Leader–follower flocking: algorithms and experiments, IEEE Transactions on Control Systems Technology, Vol. 17, No. 5, pp. 1211-1219, 2009.
[19] B. K. Sahu, B. Subudhi, Potential function-based path-following control of an autonomous underwater vehicle in an obstacle-rich environment, Transactions of the Institute of Measurement and Control, Vol. 39, No. 8, pp. 1236-1252, 2017.
[20] A. K. Khalaji, S. A. A. Moosavian, Design and implementation of a fuzzy sliding mode control law for a wheeled robot towing a trailer, Modares Mechanical Engineering, Vol. 14, No. 4, pp. 81-88, 2014. (in Persian فارسی(
[21] A. K. Khalaji, Formation control of differential drive wheeled robot in trajectory tracking, Modares Mechanical Engineering. Vol. 16, No. 11, pp. 103-112, 2016. (in Persian فارسی(
[22] T. Elmokadem, M. Zribi, and K. Youcef-Toumi, Trajectory tracking sliding mode control of underactuated AUVs, Nonlinear Dynamics, Vol. 84, No. 2, pp. 1079-1091, 2016.