مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه سازی غیرخطی ناپایداری انگشتی لزج حرارتی در محیط متخلخل ناهمسانگرد

نویسندگان
گروه حرارت و سیالات، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده
در این مقاله، ناپایداری انگشتی لزج حرارتی، در جا‌بجایی مخلوط شدنی در یک محیط متخلخل با نفوذپذیری ناهمسانگرد موردمطالعه قرار گرفته است. ویسکوزیته تابعی از دما و غلظت تعریف شده است. تأثیرات ناهمسانگردی تانسور نفوذپذیری و نیز تأثیر عدد لوئیس و ضریب تأخیر حرارتی که به دلیل انتقال حرارت سیالات با محیط جامد به وجود می‌آید مورد بررسی قرار گرفته است. رشد و شکل‌گیری این انگشتی‌ها نقشی بسیار مهم در فرآیند جابجایی سیالات، به خصوص انتقال نفت از مخازن کشف شده دارد. این شبیه سازی غیرخطی، با استفاده از روش طیفی و تبدیلات هارتلی به بررسی ناپایداری انگشتی لزج حرارتی در یک محیط متخلخل با نفوذپذیری ناهمسانگرد پرداخته شده است. نتایج ارائه‌شده شامل کانتور‌های غلظت و دما، منحنی‌های مقادیر میانگین غلظت و دما، بازده جاروبی و طول اختلاط است. نتایج نشان می‌دهد با افزایش نفوذپذیری در جهت جریان به نفوذپذیری در جهت عمود بر جریان انگشتی‌ها دیر‌تر به انتهای جبهه می‌رسند، ناپایداری کاهش پیدا می‌کند و جریان پایدارتری به دست می-آید. همچنین با افزایش عدد لوئیس جبهه حرارتی بدون انگشتی ظاهر می‌شود، بالا رفتن عدد لوئیس به پایداری جریان نیز کمک می‌کند. کاهش ضریب تأخیر حرارتی علاوه بر اینکه باعث عقب‌افتادگی جبهه حرارتی در پشت جبهه سیالاتی می‌گردد، باعث پایدارتر شدن جریان نیز می‌شود.
کلیدواژه‌ها

عنوان مقاله English

Nonlinear simulation of thermo-viscous fingering instability in anisotropic porous media

نویسندگان English

Sedigheh Dorani
Mahmood Norouzi
Mechanical Engineering Department, Shahrood University of Technology, Shahrood, Iran
چکیده English

In this paper, thermal-viscous fingering instability of miscible flow displacements in anisotropic porous media is studied .for the first time An exponential dependence of viscosity on temperature and concentration is represented by two parameters β_T and β_C, respectively. The effect of anisotropic properties of permeability tensor, Lewis number and thermal lag coefficient are investigated. Creation and propagation of these fingers are playing an important role in displacement of fluids and especially on oil transformation from discovered oil reservoirs in enhanced oil recovery process. In nonlinear simulation, a spectral method based on the Hartley transforms are used to model the thermal-viscous fingering instability in anisotropic porous media. The results include concentration and temperature contours, sweep efficiency, and mixing length. The results indicated that by increasing the anisotropic permeability ratio, the fingers arrive later to the end of the front, instability decrease and more stable flow is obtained. Also, by increasing the Lewis number, thermal front appears without any fingers. Decreasing the thermal lag coefficient causes to the thermal front stays behind the flow front and increasing the stability of the flow field.

کلیدواژه‌ها English

Thermao-viscous fingering
nonlinear simulation
thermal lag coefficient
[1] A. Zare Ghadi, A. Haghighi Asl, M. S. Valipour, Numerical modelling of double-diffusive natural convection within an arc shaped enclosure filled with a porous medium, Journal of Heat and Mass Transfer Research (JHMTR), Vol. 1, No. 2, pp. 83-91, 2014.
[2] A. Azhdari Heravi, F. Talebi, M. S. Valipour, Investigation of pore-scale random porous media using lattice boltzmann method, Journal of Heat and Mass Transfer Research (JHMTR), Vol. 2, No. 1, pp. 1-12, 2015.
[3] D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, C. Tang, Viscous flows in two dimensions, Reviews of Modern Physics, Vol. 58, No. 4, pp. 977, 1986.
[4] K. V. McCloud, J. V. Maher, Experimental perturbations to Saffman-Taylor flow, Physics Reports, Vol. 260, No. 3, pp. 139-185, 1995.
[5] S. Hill, Channeling in packed columns, Chemical Engineering Science, Vol. 1, No. 6, pp. 247-253, 1952.
[6] H. Shokri, M. Kayhani, M. Norouzi, Saffman–Taylor instability of viscoelastic fluids in anisotropic porous media, International Journal of Mechanical Sciences, Vol. 135, No.17, pp. 1-13, 2018.
[7] J. Azaiez, B. Singh, Stability of miscible displacements of shear thinning fluids in a Hele-Shaw cell, Physics of Fluids, Vol. 14, No. 5, pp. 1557-1571, 2002.
[8] M. Mishra, M. Martin, A. De Wit, Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes, Chemical Engineering Science, Vol. 65, No. 7, pp. 2392-2398, 2010.
[9] J. Avendano, N. Pannacci, B. Herzhaft, P. Gateau, P. Coussot, Enhanced displacement of a liquid pushed by a viscoelastic fluid, Journal of Colloid and Interface Science, Vol. 410, pp. 172-180, 2013.
[10] M. Nourozi, M. Shoghi, Nonlinear simulation of non-Newtonian viscous fingering instability in anisotropic porous media, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 415-425, 2015. (in Persian فارسی(
[11] M. Norouzi, M. Shoghi, A numerical study on miscible viscous fingering instability in anisotropic porous media, Physics of Fluids, Vol. 26, No. 8, pp. 084102, 2014.
[12] M. Belotserkovskaya, A. Konyukhov, Numerical simulation of viscous fingering in porous media, Physica Scripta, Vol. 2010, No. T142, pp. 014056, 2010.
[13] M. R. Shoghi, M. Norouzi, Linear stability analysis and nonlinear simulation of non-Newtonian viscous fingering instability in heterogeneous porous media, Rheologica Acta, Vol. 54, No. 11-12, pp. 973-991, 2015.
[14] M. Kayhani, H. Shokri, M. Norouzi, Nonlinear simulation a of viscoelastic fingering instability, Modares Mechanical Engineering, Vol. 16, No. 8, pp. 47-54, 2016. (in Persian فارسی(
[15] H. Shokri, M. Kayhani, M. Norouzi, Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids, Physics of Fluids, Vol. 29, No. 3, pp. 033101, 2017.
[16] X. Kong, M. Haghighi, Y. Yortsos, Visualization of steam displacement of heavy oils in a Hele-Shaw cell, Fuel, Vol. 71, No. 12, pp. 1465-1471, 1992.
[17] M. Saghir, O. Chaalal, M. Islam, Numerical and experimental modeling of viscous fingering during liquid–liquid miscible displacement, Journal of Petroleum Science and Engineering, Vol. 26, No. 1, pp. 253-262, 200
[18] K. E. Holloway, J. R. De Bruyn, Viscous fingering with a single fluid, Canadian Journal of Physics, Vol. 83, No. 5, pp. 551-564, 2005.
[19] D. Pritchard, The instability of thermal and fluid fronts during radial injection in a porous medium, Journal of Fluid Mechanics, Vol. 508, pp. 133-163, 2004.
[20] M. Islam, J. Azaiez, Miscible thermo-viscous fingering instability in porous media, Part 1: Linear stability analysis, Transport in Porous Media, Vol. 84, No. 3, pp. 821-844, 2010.
[21] M. Islam, J. Azaiez, Miscible thermo-viscous fingering instability in porous media. Part 2: Numerical simulations, Transport in Porous Media, Vol. 84, No. 3, pp. 845-861, 2010.
[22] M. Sajjadi, J. Azaiez, Thermo-viscous fingering in heterogeneous media, Proceeding of Society of Petroleum Engineers,SPE Heavy Oil Conference Canada, 12-14 June, Calgary, Alberta, Canada, 2012.
[23] W. Zimmerman, G. Homsy, Nonlinear viscous fingering in miscible displacement with anisotropic dispersion, Physics of Fluids A: Fluid Dynamics, Vol. 3, No. 8, pp. 1859-1872, 1991.