[1] C. Danduk, A. Jinoop, M. J. Yadav, S. K. Subbu, Modeling and Strategies for Laser Shock Processing, Materials Today: Proceedings, Vol. 3, No. 10, pp. 3997-4002, 2016.
[2] A. Warren, Y. Guo, S. Chen, Massive Parallel Laser Shock Peening: Simulation, Analysis, and Validation, International Journal of Fatigue, Vol. 30, No. 1, pp. 188-197, 2008.
[3] R. M. White, Elastic Wave Generation by Electron Bombardment or electromagnetic Wave Absorption, Journal of Applied Physics, Vol. 34, No. 7, pp. 2123-2124, 1963.
[4] C. Skeen, C. York, LASER‐INDUCED``BLOW‐OFF''PHENOMENA, Applied Physics Letters, Vol. 12, No. 11, pp. 369-371, 1968.
[5] D. W. Gregg, S. J. Thomas, Momentum transfer produced by focused laser giant pulses, Journal of Applied Physics, Vol. 37, No. 7, pp. 2787-2789, 1966.
[6] N. Anderholm, Laser‐generated stress waves, Applied Physics Letters, Vol. 16, No. 3, pp. 113-115, 1970.
[7] P. Mallozzi, B. Fairand, Altering material properties, US Patent No. 3850698, 1974.
[8] A. Clauer, B. Fairand, Interaction of laser-induced stress waves with metals, Applications of Lasers in Materials Processing Ed., E. Metzbower, ASM International, Materials Park, OH, Vol. 1, No. 1, pp. 229, 1979.
[9] A. H. Clauer, Laser Shock Peening for fatigue Resistance, Surface performance of titanium, Vol. 1, No. 1, pp. 217-230, 1996.
[10] P. Peyre, R. Fabbro, Laser Shock Processing: a Review of the Physics and Applications, Optical and quantum electronics, Vol. 27, No. 12, pp. 1213- 1229, 1995.
[11] J. Bolger, C. Montross, A. V. Rode, Shock waves in basalt rock generated with high-powered lasers in a confined geometry, Journal of Applied Physics, Vol. 86, No. 10, pp. 5461-5466, 1999.
[12] K. Ding, L. Ye, Laser Shock Peening: Performance and Process Simulation: Woodhead Publishing, 2006.
[13] K. K. Liu, M. R. Hill, The Effects of Laser Peening and shot Peening on Fretting Fatigue in Ti–6Al–4V Coupons, Tribology International, Vol. 42, No. 9, pp. 1250-1262, 2009.
[14] S. Zabeen, M. Preuss, P. Withers, Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth, Acta materialia, Vol. 83, No. 1, pp. 216-226, 2015.
[15] Z. Zhou, A. S. Gill, A. Telang, S. R. Mannava, K. Langer, V. K. Vasudevan, D. Qian, Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy, Experimental Mechanics, Vol. 54, No. 9, pp. 1597-1611, 2014.
[16] A. Salimianrizi, E. Foroozmehr, M. Badrossamay, H. Farrokhpour, Effect of laser shock peening on surface properties and residual stress of Al6061-T6, Optics and Lasers in Engineering, Vol. 77, No. 1, pp. 112-117, 2016.
[17] A. Salimian, E. Foroozmehr, M. Badrossamay, Laser Shock Peening of Al 6061- T6 Alloy, a theoretical and experimental study, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 73-79, 2015. (in Persian فارسی(
[18] D. F. Carpeno, T. Ohmura, L. Zhang, M. Dickinson, C. Seal, M. Hyland, Softening and compressive twinning in nanosecond ultraviolet pulsed lasertreated Ti6Al4V, Scripta Materialia, Vol. 113, No. 1, pp. 139-144, 2016.
[19] M. Kattoura, S. R. Mannava, D. Qian, V. K. Vasudevan, Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy, International Journal of Fatigue, Vol. 102, No. 1, pp. 121- 134, 2017.
[20] Z. Zhou, A. S. Gill, D. Qian, S. Mannava, K. Langer, Y. Wen, V. K. Vasudevan, A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy, International Journal of Impact Engineering, Vol. 38, No. 7, pp. 590-596, 2011.
[21] G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In Proceedings of the 7th International Symposium on Ballistics, pp. 541-547, 1983.
[22] H. Amarchinta, R. Grandhi, K. Langer, D. Stargel, Material model validation for laser shock peening process simulation, Modelling and simulation in materials science and engineering, Vol. 17, No. 1, pp. 10-15, 2008.
[23] C. Crudo, Investigation on laser shock peening capability by FE simulation, PhD Thesis, UNIVERSITA DI BOLOGNA, 2012.
[24] R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, Physics and applications of laser-shock processing, Journal of laser applications, Vol. 10, No. 6, pp. 265-279, 1998.
[25] E. Golchin, M. Moradi, S. Shamsaei, Laser drilling simulation of glass by using finite element method and selecting the suitable Gaussian distribution, in Modares Mechanical Engineering, Proceedings of the Advanced Machining and Machine Tools Conference, Vol. 15, No. 13, pp. 416-420, 2015.
[26] M. Moradi, E. Golchin, Investigation on the Effects of Process Parameters on Laser Percussion Drilling Using Finite Element Methodology; Statistical Modelling and Optimization, Latin American Journal of Solids and Structures, Vol. 14, No. 3, pp. 464-484, 2017.
[27] G. E. Dieter, D. J. Bacon, Mechanical metallurgy, McGraw-hill, New York, Vol. 3, pp. 393-417, 1986.
[28] J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyka, Microstructure and mechanical properties of high strength two-phase titanium alloys, Titanium Alloys-Advances in Properties Control InTech, Vol. 1, pp. 71-79, 2013.