[1] M. Sandeep, S. Bhargava, V. Kumar, A Bayesian approach to selecting hyperelastic constitutive models of soft tissue, Computer Methods in Applied Mechanics and Engineering, Vol. 291, pp. 102-122, 2015.
[2] W. Maurel, Y. Wu, D. Thalmann, N. M. Thalmann, Biomechanical Models for Soft Tissue Simulation, pp. 1-23, Berlin Heidelberg Springer-Verlag, 1998.
[3] W. Kolmer, Geruchsorgan, Haut und Sinnesorgane, pp. 192-249, Berlin Heidelberg, Springer, 1927.
[4] D. J. Patel, J. S. Janicki, Static elastic properties of the left coronary circumflex artery and the common carotid artery in dogs, Circulation Research, Vol. 27, No. 2, pp. 149-158, 1970.
[5] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Elasticity and the Physical Science of Solids, Vol. 61, No. 1-3, pp. 1-48, 2000.
[6] T. C. Gasser, R. W. Ogden, G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Royal Society Interface, Vol. 3, No. 6, pp. 15-35, 2006.
[7] T. C. Gasser, C. A. J. Schulze-Bauer, G. A. Holzapfel, A three-dimensional finite element model for arterial clamping, Biomechanical Engineering, Vol. 124, No. 4, pp. 355-363, 2002.
[8] G. A. Holzapfel, M. Stadler, C. A. J. Schulze-Bauer, A layer-specific threedimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing, Biomedical Engineering, Vol. 30, No. 6, pp. 753-767, 2002.
[9] J. D. Humphrey, P. B. Canham, Structure, mechanical properties and mechanics of intracranial saccular aneurysms, Elasticity and the Physical Science of Solids, Vol. 61, No. 1-3, pp. 49-81, 2000.
[10] D. R. Nolan, A. L. Gower, M. Destrade, R. W. Ogden, A robust anisotropic hyperelastic formulation for the modelling of soft tissue, Mechanical Behavior of Biomedical Materials, Vol. 39, pp. 48-60, 2014.
[11] M. Mottahedi, H. Hai-Chao, Artery buckling analysis using a two-layered wall model with collagen dispersion, Mechanical Behavior of Biomedical Materials, Vol. 60, pp. 515-524, 2016.
[12] M. Alafzadeh, E. Shirani, E. Yahaghi, N. Fatouraee, Effective parameters on variation of wall shear stress in microvessels, Modares Mechanical Engineering, Vol. 16, No. 4, pp. 129-134, 2016. (in Persian فارسی(
[13] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, pp. 206-295, West Sussex England, John Wiley & Sons, 2000.
[14] W. H. Hoppmann, L. Wan, Large deformation of elastic tubes, Biomechanics, Vol. 3, No. 6, pp. 593-600, 1970.
[15] V. A. Kas' yanov, A. I. Rachev, Deformation of blood vessels upon stretching, internal pressure, and torsion, Mechanics of Composite Materials, Vol. 16, No. 1, pp. 76-80, 1980.
[16] A. Delfino, N. Stergiopulos, J. E. Moore, J. J. Meister, Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, Biomechanics, Vol. 30, No. 8, pp. 777-786, 1997.
[17] A. D. Shah, J. D. Humphrey, Finite strain elastodynamics of intracranial saccular aneurysms, Biomechanics, Vol. 32, No. 6, pp. 593-599, 1999.
[18] C. Shu, H. Du, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, Solids and Structures, Vol. 34, No. 7, pp. 819-835, 1997.
[19] F. Civan, C. M. Sliepcevich, Differential quadrature for multi-dimensional problems, Mathematical Analysis and Applications, Vol. 101, No. 2, pp. 423- 443, 1984.
[20] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Physiology Heart and Circulatory Physiology, Vol. 289, No. 5, pp. 2048- 2058, 2005.