[1] H. Basaeri, M. R. Zakerzadeh, A. Yousefi Koma, S. S. Mohtasebi, Design and aerodynamic analysis of a morphing wing with shape memory alloy actuator, Modares Mechanical Engineering, Vol. 15, No. 5, pp. 60-70, 2015. (in Persian فارسی (
[2] A. Fadaiepour, H. Khajehsaeid, A. Ghanbari, Design and modeling of artificial arm muscle using shape memory alloys, Modares Mechanical Engineering, Vol. 17, No. 10, pp. 29-38, 2017. (in Persian فارسی (
[3] A. Hadi, A. Hassani, K. Alipour, J. Koohsorkhi, Conceptual design and modeling of an adaptable robotic mechanism actuated by shape memory alloy for inspection of low diameter pipes, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 394-402, 2017. (in Persian فارسی (
[4] J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, Vol. 56, No. Supplement C, pp. 1078-1113, 2014.
[5] D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, pp. 5-15, New York: Springer Science & Business Media, 2008.
[6] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A, Vol. 378, No. 1, pp. 24-33, 2004.
[7] Z. Zeng, J. Oliveira, M. Yang, D. Song, B. Peng, Functional fatigue behavior of NiTi-Cu dissimilar laser welds, Materials & Design, Vol. 114, pp. 282- 287, 2017.
[8] X. Zhang, S. Wang, X. Yan, D. Yue, R. Sun, X. Zhou, Probabilistic analysis for the functional and structural fatigue of NiTi wires, Materials & Design, Vol. 102, pp. 213-224, 2016.
[9] P. Sedmák, P. Šittner, J. Pilch, C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Materialia, Vol. 94, pp. 257-270, 2015.
[10] R. Lahoz, J. Puértolas, Training and two-way shape memory in NiTi alloys: influence on thermal parameters, Journal of Alloys and Compounds, Vol. 381, No. 1, pp. 130-136, 2004.
[11] M. Ansari, M. Golzar, A. H. Behravesh, Experimental studies of training stress effect on NiTi SMA performance in higher and lower stress than training stress, Modares Mechanical Engineering, Vol. 13, No. 10, pp. 14- 24, 2013. (in Persian فارسی (
[12] C. Chluba, W. Ge, R. L. de Miranda, J. Strobel, L. Kienle, E. Quandt, M. Wuttig, Ultralow-fatigue shape memory alloy films, Science, Vol. 348, No. 6238, pp. 1004-1007, 2015.
[13] K. Gall, H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Materialia, Vol. 50, No. 18, pp. 4643-4657, 2002.
[14] K. Atli, I. Karaman, R. Noebe, G. Bigelow, D. Gaydosh, Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf hightemperature shape memory alloy, Smart Materials and Structures, Vol. 24, No. 12, pp. 125023, 2015.
[15] B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, T. Ishihara, Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys, Materials Science and Engineering: A, Vol. 203, No. 1-2, pp. 187-196, 1995.
[16] J. Shaw, S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International Journal of Plasticity, Vol. 13, No. 10, pp. 837-871, 1997.
[17] H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Materials Science and Engineering: A, Vol. 314, No. 1, pp. 67-74, 2001.
[18] H. Soul, A. Isalgue, A. Yawny, V. Torra, F. Lovey, Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity, Smart Materials and Structures, Vol. 19, No. 8, pp. 085006, 2010.
[19] R. DesRoches, J. McCormick, M. Delemont, Cyclic properties of superelastic shape memory alloy wires and bars, Journal of Structural Engineering, Vol. 130, No. 1, pp. 38-46, 2004.
[20] H. Tobushi, Y. Shimeno, T. Hachisuka, K. Tanaka, Influence of strain rate on superelastic properties of TiNi shape memory alloy, Mechanics of Materials, Vol. 30, No. 2, pp. 141-150, 1998.
[21] N. Jones, S. Raghunathan, D. Dye, In-situ synchrotron characterization of transformation sequences in TiNi-based shape memory alloys during thermal cycling, Metallurgical and Materials Transactions A, Vol. 41, No. 4, pp. 912-921, 2010.
[22] L. C. Brinson, I. Schmidt, R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids, Vol. 52, No. 7, pp. 1549-1571, 2004.
[23] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical and Materials Transactions A, Vol. 17, No. 1, pp. 115-120, 1986.
[24] D. Delpueyo, X. Balandraud, M. Grédiac, Applying infrared thermography to analyse martensitic microstructures in a Cu–Al–Be shape-memory alloy subjected to a cyclic loading, Materials Science and Engineering: A, Vol. 528, No. 28, pp. 8249-8258, 2011.
[25] M. Barati, S. A. Chirani, M. Kadkhodaei, L. Saint-Sulpice, S. Calloch, On the origin of residual strain in shape memory alloys: experimental investigation on evolutions in the microstructure of CuAlBe during complex thermomechanical loadings, Smart Materials and Structures, Vol. 26, No. 2, pp. 025024, 2017.
[26] P. A. Gédouin, S. A. Chirani, S. Calloch, Phase proportioning in CuAlBe shape memory alloys during thermomechanical loadings using electric resistance variation, International Journal of Plasticity, Vol. 26, No. 2, pp. 258-272, 2010.
[27] V. Novák, P. Šittner, G. Dayananda, F. Braz-Fernandes, K. Mahesh, Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation, Materials Science and Engineering: A, Vol. 481, pp. 127-133, 2008.
[28] E. L. Cuéllar, G. Guenin, M. Morin, Study of the stress-assisted two-way memory effect of a Ti–Ni–Cu alloy using resistivity and thermoelectric power techniques, Materials Science and Engineering: A, Vol. 358, No. 1, pp. 350-355, 2003.
[29] J. Uchil, K. Mahesh, K. G. Kumara, Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy, Physica B: Condensed Matter, Vol. 324, No. 1, pp. 419-428, 2002.
[30] P. Šittner, M. Landa, P. Lukáš, V. Novák, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mechanics of Materials, Vol. 38, No. 5, pp. 475-492, 2006.
[31] V. Antonucci, G. Faiella, M. Giordano, F. Mennella, L. Nicolais, Electrical resistivity study and characterization during NiTi phase transformations, Thermochimica Acta, Vol. 462, No. 1, pp. 64-69, 2007.
[32] V. Novák, P. Šittner, G. N. Dayananda, F. M. Braz-Fernandes, K. K. Mahesh, Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation, Materials Science and Engineering: A, Vol. 481-482, No. Supplement C, pp. 127-133, 2008.
[33] J. A. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, Vol. 43, No. 8, pp. 1243-1281, 1995.
[34] N. Zotov, M. Pfund, E. Polatidis, A. F. Mark, E. J. Mittemeijer, Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys, Materials Science and Engineering: A, Vol. 682, No. Supplement C, pp. 178-191, 2017.
[35] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, International Journal of Plasticity, Vol. 27, No. 2, pp. 282-297, 2011.