مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی فرآیند آموزش شبه الاستیک و اثر حافظه‌داری دوسویه در آلیاژ حافظه‌دار نیکل-تیتانیوم

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران
2 دانشیار دانشگاه صنعتی اصفهان
3 دانشگاه مهندسی برست، فرانسه
چکیده
با ظهور آلیاژهای حافظه‌دار و به دلیل دارا بودن ویژگی‌های بسیار ارزنده مکانیکی و بیولوژیکی، این آلیاژها به طور گسترده در صنایع مختلف مورد استفاده قرار گرفتند. در بین تمام آلیاژهای حافظه‌دار، آلیاژ نیکل-تیتانیوم به دلیل خواص حرارتی و مکانیکی بسیار خوب و همچنین سازگاری بسیار مناسب با بدن انسان بیشترین کاربرد را در صنایع مختلف و به ویژه در بیومکانیک داشته و تحقیقات زیادی بر روی خواص ترمومکانیکی آن صورت گرفته است. در اکثر کاربردها، آلیاژ نیکل-تیتانیوم تحت بارگذاری ترمومکانیکی چرخه‌ای قرار می‌گیرد. مهمترین محدودیت‌های استفاده از این آلیاژ، افت خواص ماده و ناپایداری آن حین بارگذاری‌های چرخه‌ای (فرآیند آموزش) می‌باشند. در پژوهش حاضر، با استفاده از روش اندازه‌گیری همزمان مقاومت الکتریکی، فرآیند آموزش شبه الاستیک آلیاژ نیکل-تیتانیوم و همچنین اثر حافظه‌داری دوسویه به وجود آمده پس از این فرآیند مورد مطالعه قرار گرفته است. در ابتدا نحوه تغییرات کرنش باقیمانده و مقاومت الکتریکی ویژه حین فرآیند آموزش نشان داده شده و در ادامه با اندازه‌گیری مقاومت الکتریکی ویژه پس از فرآیند آموزش (حین بارگذاری‌های حرارتی خاص بدون اعمال تنش) و همچنین کرنش حافظه‌داری دوسویه به دست آمده، تاثیر مارتنزیت باقیمانده و نابجایی‌ها (کرنش پلاستیک) بر روی کرنش باقیمانده مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می‌دهند که حدود 33 درصد کرنش باقیمانده به وجود آمده حین فرآیند آموزش ناشی از مارتنزیت باقیمانده و حدود 67 درصد آن به خاطر نابجایی‌ها (کرنش پلاستیک) می‌باشد.
کلیدواژه‌ها

عنوان مقاله English

Investigation on pseudoelastic training method and the generated two-way shape memory effect in NiTi shape memory alloy

نویسندگان English

Mahmoud Barati 1
Mahmoud Kadkhodaei 2
Shabnam Arbab Chirani 3
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
3 Ecole Nationale d’Ingénieurs de Brest, ENIB, FRE CNRS 3744, IRDL, F-29200 Brest, France
چکیده English

With the advent of shape memory alloys (SMAs), several commercial and industrial applications were proposed due to their superior mechanical and biological properties. Among these materials, Nickel-Titanium (NiTi) alloys are widely applied and well-researched since they are characterized not only by good thermal and mechanical properties but also by excellent biocompatibility compared to other SMAs. In most of the applications, the structural components and devices made of NiTi SMAs work under cyclic thermomechanical loading and one of the major limitations facing the industrial use of this alloy is the degradation of the material when subjected to cyclic loadings (i.e., training). In this study, pseudoelastic training procedure in NiTi shape memory alloy and the resultant two-way shape memory effect are studied using in-situ electric resistivity measurement. At first, variations in the residual strain and in the electric resistivity during pseudoelastic training method are revealed. Then, by measuring the electric resistivity after training procedure (upon specified thermal cycling at stress-free condition) as well as the induced two-way shape memory strain, the effects of residual martensite and dislocation (plastic deformation) on the residual strain are investigated. The obtained results show that about 33% of the residual strain accumulated in 100 pseudoelastic cycles can be ascribed to the residual martensite and about 67% of the residual stain is attributed to the dislocations (plasticity).

کلیدواژه‌ها English

Shape Memory alloy
Pseudoelastic training method
Residual strain
Two-way shape memory effect
[1] H. Basaeri, M. R. Zakerzadeh, A. Yousefi Koma, S. S. Mohtasebi, Design and aerodynamic analysis of a morphing wing with shape memory alloy actuator, Modares Mechanical Engineering, Vol. 15, No. 5, pp. 60-70, 2015. (in Persian فارسی (
[2] A. Fadaiepour, H. Khajehsaeid, A. Ghanbari, Design and modeling of artificial arm muscle using shape memory alloys, Modares Mechanical Engineering, Vol. 17, No. 10, pp. 29-38, 2017. (in Persian فارسی (
[3] A. Hadi, A. Hassani, K. Alipour, J. Koohsorkhi, Conceptual design and modeling of an adaptable robotic mechanism actuated by shape memory alloy for inspection of low diameter pipes, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 394-402, 2017. (in Persian فارسی (
[4] J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, Vol. 56, No. Supplement C, pp. 1078-1113, 2014.
[5] D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, pp. 5-15, New York: Springer Science & Business Media, 2008.
[6] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A, Vol. 378, No. 1, pp. 24-33, 2004.
[7] Z. Zeng, J. Oliveira, M. Yang, D. Song, B. Peng, Functional fatigue behavior of NiTi-Cu dissimilar laser welds, Materials & Design, Vol. 114, pp. 282- 287, 2017.
[8] X. Zhang, S. Wang, X. Yan, D. Yue, R. Sun, X. Zhou, Probabilistic analysis for the functional and structural fatigue of NiTi wires, Materials & Design, Vol. 102, pp. 213-224, 2016.
[9] P. Sedmák, P. Šittner, J. Pilch, C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Materialia, Vol. 94, pp. 257-270, 2015.
[10] R. Lahoz, J. Puértolas, Training and two-way shape memory in NiTi alloys: influence on thermal parameters, Journal of Alloys and Compounds, Vol. 381, No. 1, pp. 130-136, 2004.
[11] M. Ansari, M. Golzar, A. H. Behravesh, Experimental studies of training stress effect on NiTi SMA performance in higher and lower stress than training stress, Modares Mechanical Engineering, Vol. 13, No. 10, pp. 14- 24, 2013. (in Persian فارسی (
[12] C. Chluba, W. Ge, R. L. de Miranda, J. Strobel, L. Kienle, E. Quandt, M. Wuttig, Ultralow-fatigue shape memory alloy films, Science, Vol. 348, No. 6238, pp. 1004-1007, 2015.
[13] K. Gall, H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Materialia, Vol. 50, No. 18, pp. 4643-4657, 2002.
[14] K. Atli, I. Karaman, R. Noebe, G. Bigelow, D. Gaydosh, Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf hightemperature shape memory alloy, Smart Materials and Structures, Vol. 24, No. 12, pp. 125023, 2015.
[15] B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, T. Ishihara, Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys, Materials Science and Engineering: A, Vol. 203, No. 1-2, pp. 187-196, 1995.
[16] J. Shaw, S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International Journal of Plasticity, Vol. 13, No. 10, pp. 837-871, 1997.
[17] H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Materials Science and Engineering: A, Vol. 314, No. 1, pp. 67-74, 2001.
[18] H. Soul, A. Isalgue, A. Yawny, V. Torra, F. Lovey, Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity, Smart Materials and Structures, Vol. 19, No. 8, pp. 085006, 2010.
[19] R. DesRoches, J. McCormick, M. Delemont, Cyclic properties of superelastic shape memory alloy wires and bars, Journal of Structural Engineering, Vol. 130, No. 1, pp. 38-46, 2004.
[20] H. Tobushi, Y. Shimeno, T. Hachisuka, K. Tanaka, Influence of strain rate on superelastic properties of TiNi shape memory alloy, Mechanics of Materials, Vol. 30, No. 2, pp. 141-150, 1998.
[21] N. Jones, S. Raghunathan, D. Dye, In-situ synchrotron characterization of transformation sequences in TiNi-based shape memory alloys during thermal cycling, Metallurgical and Materials Transactions A, Vol. 41, No. 4, pp. 912-921, 2010.
[22] L. C. Brinson, I. Schmidt, R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids, Vol. 52, No. 7, pp. 1549-1571, 2004.
[23] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical and Materials Transactions A, Vol. 17, No. 1, pp. 115-120, 1986.
[24] D. Delpueyo, X. Balandraud, M. Grédiac, Applying infrared thermography to analyse martensitic microstructures in a Cu–Al–Be shape-memory alloy subjected to a cyclic loading, Materials Science and Engineering: A, Vol. 528, No. 28, pp. 8249-8258, 2011.
[25] M. Barati, S. A. Chirani, M. Kadkhodaei, L. Saint-Sulpice, S. Calloch, On the origin of residual strain in shape memory alloys: experimental investigation on evolutions in the microstructure of CuAlBe during complex thermomechanical loadings, Smart Materials and Structures, Vol. 26, No. 2, pp. 025024, 2017.
[26] P. A. Gédouin, S. A. Chirani, S. Calloch, Phase proportioning in CuAlBe shape memory alloys during thermomechanical loadings using electric resistance variation, International Journal of Plasticity, Vol. 26, No. 2, pp. 258-272, 2010.
[27] V. Novák, P. Šittner, G. Dayananda, F. Braz-Fernandes, K. Mahesh, Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation, Materials Science and Engineering: A, Vol. 481, pp. 127-133, 2008.
[28] E. L. Cuéllar, G. Guenin, M. Morin, Study of the stress-assisted two-way memory effect of a Ti–Ni–Cu alloy using resistivity and thermoelectric power techniques, Materials Science and Engineering: A, Vol. 358, No. 1, pp. 350-355, 2003.
[29] J. Uchil, K. Mahesh, K. G. Kumara, Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy, Physica B: Condensed Matter, Vol. 324, No. 1, pp. 419-428, 2002.
[30] P. Šittner, M. Landa, P. Lukáš, V. Novák, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mechanics of Materials, Vol. 38, No. 5, pp. 475-492, 2006.
[31] V. Antonucci, G. Faiella, M. Giordano, F. Mennella, L. Nicolais, Electrical resistivity study and characterization during NiTi phase transformations, Thermochimica Acta, Vol. 462, No. 1, pp. 64-69, 2007.
[32] V. Novák, P. Šittner, G. N. Dayananda, F. M. Braz-Fernandes, K. K. Mahesh, Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation, Materials Science and Engineering: A, Vol. 481-482, No. Supplement C, pp. 127-133, 2008.
[33] J. A. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, Vol. 43, No. 8, pp. 1243-1281, 1995.
[34] N. Zotov, M. Pfund, E. Polatidis, A. F. Mark, E. J. Mittemeijer, Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys, Materials Science and Engineering: A, Vol. 682, No. Supplement C, pp. 178-191, 2017.
[35] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, International Journal of Plasticity, Vol. 27, No. 2, pp. 282-297, 2011.