[1] A. Baggini, F. Bua, Power transformers energy efficiency programs: a critical review, IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, pp. 1961-1965, 10-13 June, 2015.
[2] M. Toren, M. Celebi, Impact on efficiency of core materials in dry type transformers, National Conference on Electrical, Electronics and Biomedical Engineering (ELECO), Bursa, Turkey, pp. 308-312, 1-3 Dec., 2016.
[3] A. S. Tatevosyan, A. A. Tatevosyan, N. V. Zaharova, The study of the electrical steel and amorphous ferromagnets magnetic properties, Procedia Engineering, International Conference on Oil and Gas Engineering(OGE), Omsk, Russian Federation, pp. 727-734, 25-30 April, 2016.
[4] F. Isik, Y. Uyaroglu, Amorphous core transformers efficiency analysis in turkish electrical distribution systems, Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 23, No. 6, pp. 1523-1535, 2015.
[5] J. Wang, W. Sheng, L. Wang, H. Yang, Study on technical and economical efficiency of amorphous alloy transformer and on-load capacity regulating transformer in distribution network application, China International Conference on Electricity Distribution (CICED), Shenzhen, China, pp. 30- 34, 23-26 Sept., 2014.
[6] M. T. Isha, Z. Wang, Transformer hotspot temperature calculation using IEEE loading guide, International Conference on Condition Monitoring and Diagnosis, Beijing, China, pp. 1017-1020, 21-24 April, 2008.
[7] J. Li, T. Jiang, S. Grzybowski, Hot spot temperature models based on top-oil temperature for oil immersed transformers, IEEE Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, pp. 55-58, 18-21 Oct., 2009.
[8] H. R. Lashgari, Z. Chen, X. Z. Liao, D. Chu, M. Ferry and S. Li, Thermal stability, dynamic mechanical analysis and nanoindentation behavior of FeSiB(Cu) amorphous alloys, Materials Science and Engineering: A, Vol. 626, No. 6, pp. 480-499, 2015.
[9] A. Najafi, I. Iskender, Reducing losses in distribution transformer using 2605SA1 amorphous core based on time stepping finite element method, International Siberian Conference on Control and Communications (SIBCON), Omsk, Russia, pp. 1-4, 21-23 May, 2015.
[10] T. Steinmetz, B. Cranganu-Cretu, J. Smajic, Investigations of no-load and load losses in amorphous core dry-type transformers, The XIX International Conference on Electrical Machines(ICEM), Rome, Italy, pp.1-6, 6-8 Sept., 2010.
[11] M. A. Taghikhani, A. Gholami, Estimation of hottest spot temperature in power transformer windings with NDOF and DOF cooling, ScientiaIranica, Transactions D: Computer Science & Engineering and Electrical Engineering, Vol. 16, No. 2, pp. 163-170, 2009.
[12] J. Faiz, M. B. B.Sharifian, A. Fakhri, Two-dimensional finite element thermal modeling of an oil-immersed transformer, European Transactions on Electrical Power, Vol. 18, No. 6, pp. 577-594, 2007.
[13] J. Smolka, A. J. Nowak, Experimental validation of the coupled fluid flow, heat transfer and electromagnetic numerical model of the medium-power dry-type electrical transformer, International Journal of Thermal Sciences, Vol. 47, No. 10, pp. 1393-1410, 2008.
[14] C. Liu, J. Ruan, W. Wen, R. Gong, C. Liao, Temperature rise of a dry-type transformer with quasi-3D coupled-field method, IET Electric Power Applications, Vol. 10, No. 7, pp. 598–603, 2016.
[15] A. K. Das, S. Chatterjee, Finite element method-based modelling of flow rate and temperature distribution in an oil-filled disc-type winding transformer using COMSOL multiphysics, IET Electric Power Applications, Vol. 11, No. 4, pp. 664–673, 2017.
[16] J. R. D. Silva, J. P. A. Bastos, On-line evaluation of power transformer temperatures using magnetic and thermodynamics numerical modeling, IEEE Transactions on Magnetics, Vol. 53, No. 6, pp. 1 – 4, 2017.
[17] R. Hasegawa, D. Azuma, Impact of amorphous metal-based transformers on energy efficiency and environment, Journal of Magnetism and Magnetic Material, Vol. 320, No. 20, pp. 2451- 2456, 2008.
[18] J. Guo, S. Li, Study on no-load loss of amorphous alloy control transformer based on the finite element method analysis, IEEE International Conference of Online Analysis and Computing Science (ICOACS), Chongqing, China, pp. 16-19, 28-29 May, 2016.
[19] D. L. P. Feil, P. R. Silva, D. P. Bernardon, T. B. Marchesan, M. Sperandio, L. H. Medeiros, Development of an efficient distribution transformer using amorphous core and vegetable insulating oil, Electric Power Systems Research, Vol. 144, No. 4, pp. 268-279, 2017.
[20] B. A. Luciano, M. E. de Morais, C. S. Kiminami, Single phase 1-kVA amorphous core transformer: design, experimental tests, and performance after annealing, IEEE Transactions on Magnetics, Vol. 35, No. 4, pp. 2152- 2154, 1999.
[21] S. Sieradzki, R. Rygal, M. Soinski, Apparent core losses and core losses in five-limb amorphous transformer of 160 kVA, IEEE Transactions on Magnetics, Vol. 34, No. 4, pp. 1189-1191, 1998.
[22] M. A. Taghikhani, Modeling of heat transfer in layer-type power transformer, PrzegladElektrotechniczny (Electrical Review), Vol. 87, No. 12, pp. 121-123, 2011.
[23] G. Swift, T. S. Molinski, W. Lehn, A fundamental approach to transformer thermal modeling—part I: Theory and equivalent circuit, IEEE Transactions on Power Delivery, Vol. 16, No. 2, pp. 171-175, 2001.
[24] D. J. Tylavsky, Q. He, G. A. McCulla, J. R. Hunt, Sources of error in substation distribution transformer dynamic thermal modeling, IEEE Transactions on Power Delivery, Vol. 15, No. 1, pp. 178-185, 2000.
[25] D. Azizian, Triple winding dry type transformers thermal modeling with sandwich winding, 28th International Power System Conference, Tehran, Iran, pp. 1-7, 4-6 Nov., 2013. (in Persianفارسی(
[26] IEEE Standards, C57.91-2011, IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators, 2012.
[27] L. J. Rivera, D. J. Tylavsky, Acceptability of four transformer top-oil thermal models-part 2: comparing metrics, IEEE Transactions on Power Delivery, Vol. 23, No. 2, pp. 866–872, 2008.