مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی آزمایشگاهی اثر سرعت برخورد قطره بر ضریب گسترش قطرات غیرنیوتنی و نیوتنی در برخورد با سطح جامد خشک

نویسندگان
1 گروه حرارت و سیالات، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود
2 دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود
3 دانشیار دانشکده مهندسی مکانیک دانشگاه صنعتی شاهرود
چکیده
برخورد قطرات بر روی سطوح جامد دارای کاربرد گسترده‌ای در صنایع نفت و گاز، رنگ‌آمیزی سطوح، خنک‌کاری سطوح داغ و سم‌پاشی محصولات کشاورزی می‌باشد. در مطالعه حاضر، ضریب گسترش سیال غیرنیوتنی باگر روی سطح جامد خشک از قبیل آکریلیک (پلکسی‌گلس) و ورق استیل ضد زنگ بصورت آزمایشگاهی بررسی ‌شده و با قطرات نیوتنی (آب و گلیسیرین) مقایسه می‌شود. صفحات پلکسی‌گلس و استیل ضد زنگ هر دو دارای سطحی آب‌دوست هستند. در این پژوهش، سقوط قطرات سیالات غیرنیوتنی و نیوتنی در دو ارتفاع 27 و 47 سانتیمتر از سطح جامد خشک و در محدوده اعداد وبر 245≤We≤"538" بررسی شده است. هدف از انجام این تحقیق، بررسی اثر سرعت برخورد، بر ضریب گسترش قطرات غیرنیوتنی و نیوتنی در زمان برخورد می‌باشد. نتایج این تحقیق نشان می‌دهد که با زیاد شدن عدد وبر (افزایش سرعت برخورد)، حداکثر مقدار و نرخ پخش‌شدگی و جمع‌شدگی قطرات نیوتنی یا غیرنیوتنی افزایش می‌یابد. همچنین با افزایش لزجت قطرات، مقدار و نرخ پخش‌شدگی و جمع‌شدگی قطرات نیوتنی و غیرنیوتنی کاهش می‌یابد. با افزایش 32 درصدی سرعت برخورد بر روی صفحه پلکسی‌گلس (افزایش عدد وبر)، مقدار بیشینه پخش‌شدگی قطرات باگر، آب و گلیسیرین بترتیب به میزان 22، 31 و 20 درصد افزایش می‌یابند.
کلیدواژه‌ها

عنوان مقاله English

Experimental study of contact velocity effect on spreading factor of non-Newtonian and Newtonian droplets during collision with dry solid surface

نویسندگان English

Mohammad Kazem Sheykhian 1
Mahmood Norouzi 2
Mohammad Mohsen Shahmardan 3
1 Department of Mechanical Engineering, Shahrood University of Technology, Shahrood
2 Mechanical Engineering Department, Shahrood University of Technology
3 Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده English

The collision of droplets on solid surfaces is widely used in oil and gas industry, surface painting, hot surface cooling and spraying of agricultural products. In the present study, the spreading factor of Boger non-Newtonian fluid is experimentally investigated on the dry solid surface such as an acrylic (Plexiglas) and stainless steel sheet and is compared with Newtonian droplets (water and glycerin). The plates of Plexiglas and stainless steel both have a hydrophilic surface. In this research, the Newtonian and non-Newtonian fluids droplets collapse at two heights of 27 and 47 cm from the dry solid surface and are examined in the range of Weber numbers 245≤We≤"538" . The purpose of this study is to investigate the effects of contact velocity on the spreading factor of non-Newtonian and Newtonian droplets during the collision. The results of this study show that with the growth of Weber number (increasing contact velocity), the maximum value and velocity of spreading and receding are increased for the Newtonian or non-Newtonian droplets. Also, with increasing the viscosity of droplets, the value and velocity of spreading and receding are decreased for the Newtonian and non-Newtonian droplets. By increasing the velocity of collision on the Plexiglasas surface (raising the Weber number) up to 32%, the maximum value of droplets spreading is increased 22, 31 and 20 percentage respectively for the fluids of Boger, water and glycerin.

کلیدواژه‌ها English

Collision velocity
Non-Newtonian fluid of Boger
Surface roughness
Spreading factor
Viscosity
[1] R. Rioboo, M. Marengo, C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids, Vol. 33, No. 1, pp. 112-124, 2002.
[2] R. Rioboo, C. Tropea, M. Marengo, Outcomes from a drop impact on solid surfaces, Atomization and Sprays, Vol. 11, No. 2, pp. 155-165, 2001.
[3] S. Schiaffino, A. A. Sonin, Molten droplet deposition and solidification at low Weber numbers, Physics of Fluids, Vol. 9, No. 11, pp. 3172-3187, 1997.
[4] M. Pasandideh‐Fard, Y. Qiao, S. Chandra, J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Physics of Fluids, Vol. 8, No. 3, pp. 650-659, 1996.
[5] Š. Šikalo, C. Tropea, E. Ganić, Impact of droplets onto inclined surfaces, Journal of Colloid and Interface Science, Vol. 286, No. 2, pp. 661-669, 2005.
[6] S. F. Lunkad, V. V. Buwa, K. Nigam, Numerical simulations of drop impact and spreading on horizontal and inclined surfaces, Chemical Engineering Science, Vol. 62, No. 24, pp. 7214-7224, 2007.
[7] I. V. Roisman, Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film, Physics of Fluids, Vol. 21, No. 5, pp. 1-11, 2009.
[8] C. Antonini, A. Amirfazli, M. Marengo, Drop impact and wettability: From hydrophilic to superhydrophobic surfaces, Physics of Fluids, Vol. 24, No. 10, pp. 1-13, 2012.
[9] S. Singh, B. Dandapat, Spreading of a non-Newtonian liquid drop over a homogeneous rough surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 419, No. 4, pp. 228-232, 2013.
[10] M. Bussmann, S. Chandra, J. Mostaghimi, Modeling the splash of a droplet impacting a solid surface, Physics of Fluids, Vol. 12, No. 12, pp. 3121-3132, 2000.
[11] V. Bergeron, D. Bonn, J. Y. Martin, L. Vovelle, Controlling droplet deposition with polymer additives, Nature, Vol. 405, No. 6788, pp. 772-775, 2000.
[12] S. Rafaı¨, D. Bonn, Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces, Physica A: Statistical Mechanics and its Applications, Vol. 358, No. 1, pp. 58-67, 2005.
[13] G. German, V. Bertola, Impact of shear-thinning and yield-stress drops on solid substrates, Journal of Physics: Condensed Matter, Vol. 21, No. 37, pp. 1-16, 2009.
[14] A. Dechelette, P. Sojka, C. Wassgren, Non-Newtonian drops spreading on a flat surface, Journal of Fluids Engineering, Vol. 132, No. 10, pp. 101302- 101309, 2010.
[15] S. M. An, S. Y. Lee, Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces, Experimental Thermal and Fluid Science, Vol. 37, No. 2, pp. 37-45, 2012.
[16] V. Bertola, M. Wang, Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 481, No. 1, pp. 600-608, 2015.
[17] R. Andrade, O. Skurtys, F. Osorio, Experimental study of drop impacts and spreading on epicarps: effect of fluid properties, Journal of Food Engineering, Vol. 109, No. 3, pp. 430-437, 2012.
[18] R. Choudhury, J. Choi, S. Yang, Y.-J. Kim, D. Lee, Maximum spreading of liquid drop on various substrates with different wettabilities, Applied Surface Science, Vol. 415, No. 5, pp. 149-154, 2017.
[19] C. Tang, M. Qin, X. Weng, X. Zhang, P. Zhang, J. Li, Z. Huang, Dynamics of droplet impact on solid surface with different roughness, International Journal of Multiphase Flow, Vol. 96, No. 6, pp. 56-69, 2017.
[20] E. Y. Arashiro, N. R. Demarquette, Use of the pendant drop method to measure interfacial tension between molten polymers, Materials Research, Vol. 2, No. 1, pp. 23-32, 1999.
[21] K. P. Jackson, K. Walters, R. W. Williams, A rheometrical study of boger fluids, Journal of Non-Newtonian Fluid Mechanics, Vol. 14, No. 1, pp. 173- 188, 1984.