مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل‌سازی و صحه سنجی پاسخ یک حسگر گاز تحت مدولاسیون دمایی به گاز اتانول

نویسندگان
1 گروه مهندسی برق، دانشکده فنی، دانشگاه گیلان، رشت، گیلان
2 گروه مهندسی برق، دانشکده فنی، دانشگاه گیلان، رشت، ایران
چکیده
در این مقاله ابتدا یک حسگر گاز اکسید فلزی از نوع تجاری تحت مدولاسیون دمایی قرار داده شده و همزمان ثبت پاسخ‌های گذرای آن به تراکم‌های مختلف گاز اتانول ارائه می‌شود. با اعمال مدولاسیون دمایی، دمای سطح حسگر نیز توسط یک ترموکوپل نوع-S ظریف ثبت شد. سپس عملکرد این نوع حسگرها بر اساس مدل جذب اکسیژن هوا و جذب گاز اتانول بر سطح لایه حساس با استفاده از معادله جذب هم‌دمای فروندلیش بیان می‌شود. در ادامه، این مدل با استفاده از نرم افزار متلب در محیط سیمولینک شبیه‌سازی می‌شود. با استفاده از این مدل می‌توان پاسخ پویای حسگر را به اتانول مشاهده کرد. در این مدل، تراکم یک گاز بصورت ولتاژ در نظر گرفته می‌شود. این پارامتر به همراه پروفایل دمایی سطح یک حسگر تحت مدولاسیون دمایی و هدایت حسگر تحت تاثیر اکسیژن هوا، به عنوان ورودی‌های مدل و پاسخ گذرای حسگر به عنوان خروجی مدل در نظر گرفته می‌شوند. پارامترهای این مدل بر اساس معیار نزدیکی پاسخ‌های شبیه‌سازی شده و پاسخ‌های ثبت شده در هر تراکم از گاز اتانول محاسبه می‌شوند. نتایج شبیه‌سازی بر اساس میانگین پارامترهای شبیه‌سازی شده نیز نشان‌دهنده‌ی نزدیکی پاسخ‌های شبیه‌سازی شده و پاسخ‌های ثبت‌شده‌ی واقعی بود.
کلیدواژه‌ها

عنوان مقاله English

Modeling and validation of the transient response of a temperature modulated gas sensor to ethanol

نویسندگان English

Seyed Mohsen Hosseini-Golgoo 1
Sajjad Sabet 2
1 Electrical Engineering, Engineering Faculty, University of Guilan, Rasht, Iran
2 Electrical Engineering, Engineering Faculty, University of Guilan, Rasht, Iran
چکیده English

In this paper, a commercial metal-oxide gas sensor was first placed under temperature modulation regime and simultaneously their transient response to various concentrations of ethanol vapors was recorded. By applying the temperature modulation, the sensor surface temperature was also recorded by a S-type thermocouple. Then, the performance of these sensors was expressed based on the both air oxygen absorption model and ethanol absorption on the surface of the sensitive layer using the Freundlich isotherm equation. Further, this model is simulated using the MATLAB software in the simulink environment. Using this model, one can see the sensor's dynamic response to ethanol. In this model, the concentration of a gas is considered as a voltage. This parameter, along with the temperature profile of the sensor surface under temperature modulation and sensor conductance under the influence of air oxygen, are considered as inputs of the model and transient response of the sensor as output of the model. The parameters of this model are calculated based on the approximate criterion of simulated responses and the responses recorded for each concentration of ethanol gas. The simulation results based on the average simulated parameters also showed that the simulated responses were close to the actual recorded responses.

کلیدواژه‌ها English

Metal oxide gas sensor
MATLAB Simulink
Temperature modulation
Transient response
[1] F. Hossein-Babaei, M. Keshmiri, M. Kakavand, T. Troczynski, A resistive gas sensor based on undoped p-type anatase, Sensors and Actuators B, Vol. 110, No. 1, pp. 28-35, 2005.
[2] S. M. Hosseini-golgoo, F. Hossein. Babaei, R. Afzalzadeh, Detection of flammable gases by a tin oxide sensor made by evaporation of the electronic beam, Sharif Scientific Journal, Vol. 21, pp. 29-38, 2007 (in persian فارسی(
[3] F. Hossein-Babaei, M. Akbari-Saatlu, Growth of ZnO nanorods on the surface and edges of a multilayer graphene sheet, Scripta Materialia, Vol. 139, No. 1, pp. 77-82, 2017.
[4] F. Hossein-Babaei, N. Alaei. Sheini, M. Jahangiri, The ohmic contact between zinc oxide and highly oriented pyrolytic graphite, Materials Letters, Vol. 192, No.1, pp. 52-55, 2017.
[5] F. Hossein-Babaei, N. Alaei. Sheini, Electronic conduction in Ti/PolyTiO2/Ti structures, Scientific Reports, Vol. 6, No. 29624, pp. 1-11, 2016.
[6] H. Amirabadi, M. Shakeri, E. Hourichi, measurement of rough surface by capacitive sensor, Modares Mechanical Engineering, Vol. 8, No. 1, pp. 87- 97, 2008 (in persian فارسی.(
[7] X. Yin, L. Zhang, F. Tian, D. Zhang, Temperature modulated gas sensing Enose system for low-cost and fast detection, IEEE Sensors Journal, Vol. 16, No. 2, pp. 464-474, 2015.
[8] M. Yoo, H. Ki Kim, S. Lim, Electromagnetic-based ethanol chemical sensor using metamaterial absorber, Sensors and Actuators B, Vol. 222, No. 1, pp. 173-180, 2016.
[9] S. M. Hosseini-Golgoo, H. Bozorgi, A. Saberkari, Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature modulation resistive gas sensors, Measurement Science and Technology, Vol. 26, No. 6, pp. 1-10, 2015.
[10] Q. Deng, sh. Gao, T. Lei, Y. Ling, Sh. Zhang, Ch. Xie, Temperature and light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensors, Sensors and Actuators B, Vol. 247, No. 1, pp. 903-915, 2017.
[11] S. M. Hosseini-Golgoo, F. Hossein-Babaei, Assessing the diagnostic information in the response patterns of a temperature-modulated tin oxide gas sensor, Measurement Science and Technology, Vol. 22, No. 3, pp. 1-11, 2011.
[12] F. Hossein-Babaei, A. Amini, A breakthrough in gas diagnosis with a temperature- modulated generic metal oxide gas sensor, Sensors and Actuators B, Vol. 166-167, No. 1, pp. 419-425, 2012.
[13] A.Ortega, S. Marco, A. Perera, T, Sundic, A.Pardo , J. Samitier, An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor, Sensors and Actuators B, Vol. 78, No. 1-3, pp. 32-39, 2001.
[14] S. Al-Khalifa, S. Maldonado-Bascon, J. W. Gardner, Identification of CO and NO2 using a thermally resistive microsensor and support vector machine, IEE Proceedings-Science, Measurement and Technology, Vol. 150, No. 1, pp. 11-14, 2003.
[15] A. Fort, M. Muganaini, S. Rocchi, V. Vignoli, E. Comini, G. Faglia, A. Ponzoni, Metal-oxide nanowire sensors for CO detection: characterization and modeling, Sensors and Actuators B, Vol. 148, No. 1, pp. 283-291, 2010.
[16] Y. Gonullu, K. Kelm, S. Mathur, B. Saruhan, Equivalent circuit models for determination of the relation between the sensing behavior and properties of undoped/Cr doped TiO2 NTs, Chemosensors, Vol. 2, No. 1, pp. 69-84, 2014.
[17] E. Llobet, X. Vilanova, J. Brezmes, D. Lopez, X. Correig, Electrical equivalent models of semiconductor gas sensors using PSpice, Sensors and Actuators B, Vol. 77, No. 1-2, pp. 275-280, 2001 .
[18]E. Llobet, J. Rubio, X. Vilanova, J. Brezmes, X. Correig, J. W. Gardner, E. L. Hines, Electronic nose simulation tool centred on PSpice, Sensors and Actuators B, Vol. 76, No. 1-3, pp. 419-429, 2001.
[19] J. W. Gardner, E. L. Hines, PSPICE model for resistive gas odour sensors, IEE Proceeding, Circuit Devices System,Vol. 146, No. 3, pp. 101-104, 1999.
[20] E. Llobet, X. Vilinova, J. Brezmes, R Alcubilla, J. Calderer, J. E. Sueiras, X. Correig, Conductance-transient analysis of thick-film tin oxide gas sensors under successive gas-injection steps, IOP Science, Vol. 8, No. 10, pp. 1133- 1138, 1997.
[21] A. D’Amico, C. Di Natale, C. Falconi, G. Pennazza, M. Santonico, I. Lundstorm, Equivalent electric circuits for chemical sensors in the langmuir regime, Sensors and Actuators B, Vol. 238, No.1, pp. 214-220, 2017.
[22] FIS gas sensor SP3-AQ2-01 for air quality controls (VOCs), Accessed on 7 October 2017; http://www.fisinc.co.jp/en/common/pdf/SP3SAQ201E_P.pdf.
[23] F. Hossein-Babaei, S. M. Hosseini-Golgoo, Analyzing the responses of a thermally modulated gas sensor using a linear system identification technique for gas diagnosis, IEEE Sensors Journal, Vol. 8, No. 11, pp. 1837- 1847, 2008.
[24] LM35 precision centigrade temperature sensors (Rev. H), Accessed on 25 November 2017; http://www.ti.com/product/LM35/datasheet/abstract#SNIS1592470.
[25] M. Batzill, Surface science studies of gas sensing materials: SnO2, Sensors, Vol. 6, No. 10, pp. 1345-1366, 2006.
[26] P. K. Clifford, D. T. Tuma, Charasteristics of semiconductor gas sensors I. Steady-state gas response, Sensors and Actuators, Vol. 3, No. 1, pp. 233-254, 1982-83.
[27] .Fadaei, M. Ghassemi, R. Mohammadi, Fuel concentration impedance simulation of a planar solid oxide fuel cell, Modares Mechanical Engineering, Vol. 13, No. 15, pp. 38-49, 2013. (in persian فارسی(
[28] J. Samitier, J. M. Lopez-Villegas, S. Marco, L. Camara, A. Pardo, O. Ruiz, J. R. Morante, A new method to analyse signal transients in chemical sensors, Sensors and Actuators B, Vol. 8, No. 1-3, pp. 308-312, 1994.
[29] S. Wlodek, K. Colbow, F. Consadori, Signal-shape analysis of a thermally cycled tin oxide gas sensor, Sensors and Actuators B, Vol. 3, No. 1, pp. 63- 68, 1991.
[30] S. R. Morrison, Chemical sensors, S. M. Sze (Ed.), Semiconductor sensors, pp. 392, New York: John Wiley & Sons, 1994.
[31] J. F. Mcaleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, Tin dioxide gas sensors Part 1.-Aspects of the surface chemistry revealed by electrical conductance variations, Journal of the Chemical Society, Vol. 83, No. 4, pp. 1323-1346, 1987.