[1] F. Hossein-Babaei, M. Keshmiri, M. Kakavand, T. Troczynski, A resistive gas sensor based on undoped p-type anatase, Sensors and Actuators B, Vol. 110, No. 1, pp. 28-35, 2005.
[2] S. M. Hosseini-golgoo, F. Hossein. Babaei, R. Afzalzadeh, Detection of flammable gases by a tin oxide sensor made by evaporation of the electronic beam, Sharif Scientific Journal, Vol. 21, pp. 29-38, 2007 (in persian فارسی(
[3] F. Hossein-Babaei, M. Akbari-Saatlu, Growth of ZnO nanorods on the surface and edges of a multilayer graphene sheet, Scripta Materialia, Vol. 139, No. 1, pp. 77-82, 2017.
[4] F. Hossein-Babaei, N. Alaei. Sheini, M. Jahangiri, The ohmic contact between zinc oxide and highly oriented pyrolytic graphite, Materials Letters, Vol. 192, No.1, pp. 52-55, 2017.
[5] F. Hossein-Babaei, N. Alaei. Sheini, Electronic conduction in Ti/PolyTiO2/Ti structures, Scientific Reports, Vol. 6, No. 29624, pp. 1-11, 2016.
[6] H. Amirabadi, M. Shakeri, E. Hourichi, measurement of rough surface by capacitive sensor, Modares Mechanical Engineering, Vol. 8, No. 1, pp. 87- 97, 2008 (in persian فارسی.(
[7] X. Yin, L. Zhang, F. Tian, D. Zhang, Temperature modulated gas sensing Enose system for low-cost and fast detection, IEEE Sensors Journal, Vol. 16, No. 2, pp. 464-474, 2015.
[8] M. Yoo, H. Ki Kim, S. Lim, Electromagnetic-based ethanol chemical sensor using metamaterial absorber, Sensors and Actuators B, Vol. 222, No. 1, pp. 173-180, 2016.
[9] S. M. Hosseini-Golgoo, H. Bozorgi, A. Saberkari, Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature modulation resistive gas sensors, Measurement Science and Technology, Vol. 26, No. 6, pp. 1-10, 2015.
[10] Q. Deng, sh. Gao, T. Lei, Y. Ling, Sh. Zhang, Ch. Xie, Temperature and light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensors, Sensors and Actuators B, Vol. 247, No. 1, pp. 903-915, 2017.
[11] S. M. Hosseini-Golgoo, F. Hossein-Babaei, Assessing the diagnostic information in the response patterns of a temperature-modulated tin oxide gas sensor, Measurement Science and Technology, Vol. 22, No. 3, pp. 1-11, 2011.
[12] F. Hossein-Babaei, A. Amini, A breakthrough in gas diagnosis with a temperature- modulated generic metal oxide gas sensor, Sensors and Actuators B, Vol. 166-167, No. 1, pp. 419-425, 2012.
[13] A.Ortega, S. Marco, A. Perera, T, Sundic, A.Pardo , J. Samitier, An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor, Sensors and Actuators B, Vol. 78, No. 1-3, pp. 32-39, 2001.
[14] S. Al-Khalifa, S. Maldonado-Bascon, J. W. Gardner, Identification of CO and NO2 using a thermally resistive microsensor and support vector machine, IEE Proceedings-Science, Measurement and Technology, Vol. 150, No. 1, pp. 11-14, 2003.
[15] A. Fort, M. Muganaini, S. Rocchi, V. Vignoli, E. Comini, G. Faglia, A. Ponzoni, Metal-oxide nanowire sensors for CO detection: characterization and modeling, Sensors and Actuators B, Vol. 148, No. 1, pp. 283-291, 2010.
[16] Y. Gonullu, K. Kelm, S. Mathur, B. Saruhan, Equivalent circuit models for determination of the relation between the sensing behavior and properties of undoped/Cr doped TiO2 NTs, Chemosensors, Vol. 2, No. 1, pp. 69-84, 2014.
[17] E. Llobet, X. Vilanova, J. Brezmes, D. Lopez, X. Correig, Electrical equivalent models of semiconductor gas sensors using PSpice, Sensors and Actuators B, Vol. 77, No. 1-2, pp. 275-280, 2001 .
[18]E. Llobet, J. Rubio, X. Vilanova, J. Brezmes, X. Correig, J. W. Gardner, E. L. Hines, Electronic nose simulation tool centred on PSpice, Sensors and Actuators B, Vol. 76, No. 1-3, pp. 419-429, 2001.
[19] J. W. Gardner, E. L. Hines, PSPICE model for resistive gas odour sensors, IEE Proceeding, Circuit Devices System,Vol. 146, No. 3, pp. 101-104, 1999.
[20] E. Llobet, X. Vilinova, J. Brezmes, R Alcubilla, J. Calderer, J. E. Sueiras, X. Correig, Conductance-transient analysis of thick-film tin oxide gas sensors under successive gas-injection steps, IOP Science, Vol. 8, No. 10, pp. 1133- 1138, 1997.
[21] A. D’Amico, C. Di Natale, C. Falconi, G. Pennazza, M. Santonico, I. Lundstorm, Equivalent electric circuits for chemical sensors in the langmuir regime, Sensors and Actuators B, Vol. 238, No.1, pp. 214-220, 2017.
[22] FIS gas sensor SP3-AQ2-01 for air quality controls (VOCs), Accessed on 7 October 2017; http://www.fisinc.co.jp/en/common/pdf/SP3SAQ201E_P.pdf.
[23] F. Hossein-Babaei, S. M. Hosseini-Golgoo, Analyzing the responses of a thermally modulated gas sensor using a linear system identification technique for gas diagnosis, IEEE Sensors Journal, Vol. 8, No. 11, pp. 1837- 1847, 2008.
[24] LM35 precision centigrade temperature sensors (Rev. H), Accessed on 25 November 2017; http://www.ti.com/product/LM35/datasheet/abstract#SNIS1592470.
[25] M. Batzill, Surface science studies of gas sensing materials: SnO2, Sensors, Vol. 6, No. 10, pp. 1345-1366, 2006.
[26] P. K. Clifford, D. T. Tuma, Charasteristics of semiconductor gas sensors I. Steady-state gas response, Sensors and Actuators, Vol. 3, No. 1, pp. 233-254, 1982-83.
[27] .Fadaei, M. Ghassemi, R. Mohammadi, Fuel concentration impedance simulation of a planar solid oxide fuel cell, Modares Mechanical Engineering, Vol. 13, No. 15, pp. 38-49, 2013. (in persian فارسی(
[28] J. Samitier, J. M. Lopez-Villegas, S. Marco, L. Camara, A. Pardo, O. Ruiz, J. R. Morante, A new method to analyse signal transients in chemical sensors, Sensors and Actuators B, Vol. 8, No. 1-3, pp. 308-312, 1994.
[29] S. Wlodek, K. Colbow, F. Consadori, Signal-shape analysis of a thermally cycled tin oxide gas sensor, Sensors and Actuators B, Vol. 3, No. 1, pp. 63- 68, 1991.
[30] S. R. Morrison, Chemical sensors, S. M. Sze (Ed.), Semiconductor sensors, pp. 392, New York: John Wiley & Sons, 1994.
[31] J. F. Mcaleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, Tin dioxide gas sensors Part 1.-Aspects of the surface chemistry revealed by electrical conductance variations, Journal of the Chemical Society, Vol. 83, No. 4, pp. 1323-1346, 1987.