مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی اثر تعداد پاس و نانوذرات ZrO2 بر ریزساختار، خواص مکانیکی و رفتار سایش در جوشکاری اصطکاکی اغتشاشی Al-5083

نویسندگان
1 دانشگاه بوعلی سینا همدان
2 دانشگاه صنعتی همدان
3 هیئت علمی رشته مهندسی مواد دانشگاه بوعلی سینا
چکیده
در این پژوهش از فرآیند جوشکاری اصطکاکی اغتشاشی برای انجام اتصال لب به لب آلیاژ آلومینیم 5083 و تولید همزمان نانوکامپوزیت Al-ZrO2 در محل اتصال استفاده شد. ابتدا متغیرهای جوشکاری اصطکاکی اغتشاشی شامل سرعت دورانی، سرعت پیشروی و زاویه انحراف مورد بررسی قرار گرفت تا نمونه‌ای که از نظر ظاهری بی‌عیب و بیشترین استحکام کششی را داشت، به عنوان نمونه مطلوب انتخاب شود تا با اضافه کردن نانوذرات زیرکونیا به بررسی اثر تعداد پاس بر ریزساختار، خواص مکانیکی و سایش نمونه‌های جوشکاری شده پرداخته شود. برای بررسی ریزساختار نمونه‌ها از میکروسکوپ‌های نوری، الکترونی روبشی و نیروی اتمی استفاده شد و نتایج نشان داد که با افزایش تعداد پاس، توزیع ذرات تقویت کننده یکنواخت‌تر شده و اندازه دانه در ناحیه اغتشاشی به شدت کاهش پیدا کرده است. علت این امر به حضور ذرات تقویت کننده مربوط می‌شود که با ایجاد قفل کنندگی مرزدانه‌ها، کمک به جوانه‌زنی دانه‌های تبلورمجدد یافته و تاثیر بر شکسته شدن دانه‌های اولیه می‌گردد. بیشینه سختی و استحکام کششی مربوط به نمونه چهار پاس بود که به ترتیب111 HV و 328.3 MPa بدست آمد که میزان سختی و کشش به ترتیب حدود 26 و 24 درصد نسبت به نمونه بدون پودر افزایش داشته است. برای ارزیابی مقاومت به سایش نمونه‌ها، از آزمون رفت و برگشتی استفاده شد و نتایج آزمون سایش نشان داد که با افزایش تعداد پاس میزان مقاومت به سایش افزایش می‌یابد.
کلیدواژه‌ها

عنوان مقاله English

The effects of Pass number and Nano-Size ZrO2 powder on the Mechanical, Microstructure and Wear behavior in Friction Stir Welding of the Al-5083

نویسندگان English

saeed ahmadifard 1
akbar heidarpour 2
Shahab Kazemi 3
1 Buali sina
2 hamedan university
3 department of material engineering, bu ali sina university, hamedan. Iran
چکیده English

In this study friction stir welding was used to perform butt joint of Al5083 and simultaneous production of Al-ZrO2 nanocomposite in weldment. Welding parameters such as rotational speed, travel speed and tilt angle were varied to obtain optimum weldment with no defect and high tensile strength, and then by adding zirconia nanoparticle to welding zone of optimum sample, the effects of pass number on microstructure, mechanical properties and wear characteristics of welded specimens were investigated. In order to investigate microstructure, optical and scanning electron microscope and atomic force microscope was used. Results showed that by increasing pass number, the distribution of nanoparticles in the matrix become more homogenous and grain size in the stir zone has considerably decreased. The reason of this phenomena could be attributed to the presence of reinforcement nanoparticles which it causes pinning the grain boundary, enhancing nucleation of new recrystallized grains and the effect on breaking of initial grains. The maximum microhardness and tensile strength of weldment were obtained for composite weldment after four pass of 111 Hv and 328.3 MPa, which these values were 24 and 26% higher than weldment without reinforcement. Wear resistance of the weldment was determined by pin on disk test and revealed that by increasing pass number of FSW, the wear resistance increased.

کلیدواژه‌ها English

Friction Stir Welding
Nano Particle
Pass Number
Mechanical properties
Microstructure
[1] S. Ahmadifard, N. Shahin, Sh. Kazemi, A. Heidarpour, A. Shirazi, Fabrication of A5083/SiC surface composite by friction stir processing and its characterization, Science and Technology of Composites, Vol. 2, No. 4, pp. 31-36, 2016. (in Persian فارسی (
[2] S. A. Hossieni, K. Ranjbar, R. Dehmolaei, A. R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing, Alloys and Compounds, Vol. 662, No. 1, pp. 725-733, 2014.
[3] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R, Vol. 50, No. 1-2, pp. 1-78, 2005.
[4] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005 vol%Al2O3p composite, Composites Science and Technology, Vol. 67, No. 3–4, pp. 605-615, 2007.
[5] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminum alloy joints, Materials and Design, Vol. 32, No. 1, pp. 2878– 2890, 2011.
[6] W. B. Lee, S. B. Jung, The joint properties of copper by friction stir welding, Materials Letters, Vol. 58, No. 1, pp. 1041- 1046, 2004.
[7] J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding, Scripta Materials, Vol. 58, No. 4, pp. 372–376, 2008.
[8] V. Balasubramanian, Relationship between base metal properties and friction stir welding process parameters, Materials Science Engineering A, Vol. 480, No. 5, pp. 397–403, 2008.
[9] C. M. Chen, R. Kovacevic, Finite element modeling of friction stir weldingthermal and thermo mechanical analysis, Machining Tool Manufacture, Vol. 43, No. 2, pp. 1319–1326, 2003.
[10] A. Feng, B. Xiao, Z. Y. Ma, Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite, Composite Science and Technology, Vol. 68, No. 4, pp. 2141–2148, 2008.
[11] R. Nandan, T. Debroy, H. Bhadeshia, Recent advances in friction-stir welding-Process, weldment structure and properties, Progress in Materials Science, Vol. 53, No. 9, pp. 980–1023, 2008.
[12] M. Nazari, M. K. Besharati Givi, M. R. Farahani, J. Mollaei Milani, H. Mohammadzaeh Jamaliyan, Investigation on the effects of using nano size Al2O3 powder on the mechanical and microstructural in the multi-passes continuous friction stir welding of the 2024-T6, Modares Mechanical Engineering, Vol. 14, No. 12, pp. 85-90, 2014. (in Persian فارسی (
[13] S. S. Mirjavadi, M. Alipour, S. Emamian, S. Kord, A. M. S. Hamouda, G. Koppad, R. Keshavamurthy, Investigation of the effects of TiO2 Nanoparticles on the microstructure, mechanical properties and wear resistance of friction stir welded Al5083, Alloys and Compounds, Vol. 712, No. 1, pp. 795-803, 2017.
[14] M. Saeidi, M. Barmouz, M. K. Besharati Givi, Investigation on AA 5083/AA7075 + Al2O3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior, Materials Research, Vol. 18, No. 6, pp. 1156-1162, 2015.
[15] M. Bahrami, N. Helmi, K, Dehghani, M. K. B. Givi, Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength, Materials Science and Engineering A, Vol. 595, No. 5, pp. 173-178, 2014.
[16] K. Zhao, Z. Liu, B. Xiao, Z. Ma, Friction stir welding of carbon nanotube reinforced Al-Cu-Mg alloy composite plates, Materials Science and Technology, Vol. 33, No. 9, pp. 1004-1008, 2017.
[17] R. Bauri, G. D. Janaki Ram, D. Yadav, C. N. Shyam Kumar, Effect of process parameters and tool geometry on fabrication of Ni particles reinforced 5083 Al composite by friction stir processing, Materials Today: Proceedings, Vol. 2, No. 2, pp. 3203 – 3211, 2015.
[18] A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, F. Molaiekiya, Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing, Materials and Design, Vol. 37, No. 8, pp. 458–464, 2012.
[19] M. Ashjari, A. Mostafapour Asl, S. Rouhi, Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nano composite fabricated via friction stir processing, Materials Science and Engineering A, Vol. 645, No. 1, pp. 40–46, 2015.
[20] I. Dinaharan, R. Nelson, S. J. Vijay, E. T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization, Vol. 118, No. 1, pp. 149-158, 2017.
[21] F. Khodabakhshi, A. Simchi, A. H. Kokabi, M. Sadeghahmadi, A. P. Gerlich, Reactive friction stir processing of AA 5052 –TiO2 nanocomposite: process microstructure mechanical characteristics, Materials Science and Technology, Vol. 31, No. 4, pp. 426-436, 2015.
[22] S. C. Tjong, Novel nanoparticle reinforced metal matrix composites with enhanced mechanical properties, Advanced Engineering Materials, Vol. 8, No. 1, pp. 639–652, 2007.
[23] A. Mostafapour, S. T. Khandani, Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method, Materials Science and Engineering A, Vol. 559, No. 1, pp. 549-557, 2013.
[24] A. Heidarpour, S. Ahmadifard, Sh. Kazemi, Fabrication and characterization of Al5083/Al2O3 surface nanocomposite via friction stir processing, Advanced Materials and Processing, Vol. 5, No. 2, pp. 11-24, 2017.
[25] L. Raju, Suvarna, A. Kumar, Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing, Defence Technology, Vol. 15, No. 2, pp. 1-9, 2014.
[26] S. Ahmadifard, Sh. Kazemi, A. Heidarpour, Fabrication of Al5083/TiO2 surface composite by friction stir process and investigating its microstructural, mechanical and wear properties, Modares Mechanical Engineering, Vol. 15, No. 12, pp. 55-62, 2015. (in Persian فارسی(
[27] R. Bauri, D. Yadav, G. Suhas, Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite, Materials Science and Engineering A, Vol. 528, No. 13-14, pp. 4732-4739, 2011.
[28] D. Davidson, B. Shiloh, S. Neelakrishnan, Influnce of friction stir welding parameters on tenslie properties of AA8011 Aluminium alloy plate, Computation and Theoretical Nanoscience, Vol. 15, No. 1, pp. 93–98, 2018.
[29] C. Meng, H. C. Cui, G. Lu, X. H. Tang, Evolution behavior of TiB2 particles during laser welding on aluminum metal matrix composites reinforced with particles, Transactions of Nonferrous Metals Society of China, Vol. 23, No. 6, pp. 1543-1548, 2013.
[30] M. M. El-Sayed, A. Y. Shash, M. Abd Rabou, Influence of the welding speeds and chancing the tool pin profile on the Friction Stir welding AA5083-O joins, Welding and Joining, Vol. 35, No. 3, pp. 44- 51, 2017.
[31] D. Khayyamin, A. Mostafapour, R. Keshmiri, The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP, Materials Science and Engineering A, Vol. 559, No. 9, pp. 217–221, 2013.
[32] S. A. Alidokht, A. Abdollah-zadeh, S. Soleymani, H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Materials and Design, Vol. 32, No. 5, pp. 2727-2733, 2011.
[33] R. Kapoor, K. Kandasamy, R. S. Mishra, J. A. Baumann, G. Grant, Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy, Materials Science and Engineering A, Vol. 561, No. 1, pp. 159–166, 2013.
[34] S. Suresha, B. K. Sridhara, Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates, Composites Science and Technology, Vol. 70, No. 11, pp. 1652-1659, 2010.
[35] A. Devaraju, B. Kumar, Kotiveerachari, Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing, Materials and Design, Vol. 45, No. 1, pp. 576-585, 2013.
[36] Y. Morisada, T. Nagaoka, M. Fukusumi, MWCNTs/AZ31 surface composites fabricated by friction stir processing, Materials Science and Engineering A, Vol. 419, No. 1-2, pp. 344-348, 2006.
[37] S. Ahmadifard, M. Roknian, T. Tinati Seresht, Sh. Kazemi, Fabrication of hybrid nanocomposite Al2024/Gr/ZrO2 via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties, Modares Mechanical Engineering, Vol. 16, No. 6, pp. 119-126, 2016. (in Persian فارسی(
[38] L. Dinaharan, S. Saravanakumar, K. Kalaiselvan, S. Gopalakrishnan, Microstructure and sliding wear characterization of Cu/TiB2 coppermatrix composites fabricated via friction stir processing, Asian Ceramic Societies, Vol. 5, No. 3, pp. 295-303, 2017.
[39] M. Azadi, M. Shamanian, M. A. Golozar, Hardness and wear behavior of Al7075/TiC/MoS2 surface hybrid composite produced by friction stir processing, Surface Science and Engineering, Vol. 13, No. 31, pp. 41-51. 2017. (in Persian فارسی(