[1] S. Ahmadifard, N. Shahin, Sh. Kazemi, A. Heidarpour, A. Shirazi, Fabrication of A5083/SiC surface composite by friction stir processing and its characterization, Science and Technology of Composites, Vol. 2, No. 4, pp. 31-36, 2016. (in Persian فارسی (
[2] S. A. Hossieni, K. Ranjbar, R. Dehmolaei, A. R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing, Alloys and Compounds, Vol. 662, No. 1, pp. 725-733, 2014.
[3] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R, Vol. 50, No. 1-2, pp. 1-78, 2005.
[4] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005 vol%Al2O3p composite, Composites Science and Technology, Vol. 67, No. 3–4, pp. 605-615, 2007.
[5] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminum alloy joints, Materials and Design, Vol. 32, No. 1, pp. 2878– 2890, 2011.
[6] W. B. Lee, S. B. Jung, The joint properties of copper by friction stir welding, Materials Letters, Vol. 58, No. 1, pp. 1041- 1046, 2004.
[7] J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding, Scripta Materials, Vol. 58, No. 4, pp. 372–376, 2008.
[8] V. Balasubramanian, Relationship between base metal properties and friction stir welding process parameters, Materials Science Engineering A, Vol. 480, No. 5, pp. 397–403, 2008.
[9] C. M. Chen, R. Kovacevic, Finite element modeling of friction stir weldingthermal and thermo mechanical analysis, Machining Tool Manufacture, Vol. 43, No. 2, pp. 1319–1326, 2003.
[10] A. Feng, B. Xiao, Z. Y. Ma, Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite, Composite Science and Technology, Vol. 68, No. 4, pp. 2141–2148, 2008.
[11] R. Nandan, T. Debroy, H. Bhadeshia, Recent advances in friction-stir welding-Process, weldment structure and properties, Progress in Materials Science, Vol. 53, No. 9, pp. 980–1023, 2008.
[12] M. Nazari, M. K. Besharati Givi, M. R. Farahani, J. Mollaei Milani, H. Mohammadzaeh Jamaliyan, Investigation on the effects of using nano size Al2O3 powder on the mechanical and microstructural in the multi-passes continuous friction stir welding of the 2024-T6, Modares Mechanical Engineering, Vol. 14, No. 12, pp. 85-90, 2014. (in Persian فارسی (
[13] S. S. Mirjavadi, M. Alipour, S. Emamian, S. Kord, A. M. S. Hamouda, G. Koppad, R. Keshavamurthy, Investigation of the effects of TiO2 Nanoparticles on the microstructure, mechanical properties and wear resistance of friction stir welded Al5083, Alloys and Compounds, Vol. 712, No. 1, pp. 795-803, 2017.
[14] M. Saeidi, M. Barmouz, M. K. Besharati Givi, Investigation on AA 5083/AA7075 + Al2O3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior, Materials Research, Vol. 18, No. 6, pp. 1156-1162, 2015.
[15] M. Bahrami, N. Helmi, K, Dehghani, M. K. B. Givi, Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength, Materials Science and Engineering A, Vol. 595, No. 5, pp. 173-178, 2014.
[16] K. Zhao, Z. Liu, B. Xiao, Z. Ma, Friction stir welding of carbon nanotube reinforced Al-Cu-Mg alloy composite plates, Materials Science and Technology, Vol. 33, No. 9, pp. 1004-1008, 2017.
[17] R. Bauri, G. D. Janaki Ram, D. Yadav, C. N. Shyam Kumar, Effect of process parameters and tool geometry on fabrication of Ni particles reinforced 5083 Al composite by friction stir processing, Materials Today: Proceedings, Vol. 2, No. 2, pp. 3203 – 3211, 2015.
[18] A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, F. Molaiekiya, Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing, Materials and Design, Vol. 37, No. 8, pp. 458–464, 2012.
[19] M. Ashjari, A. Mostafapour Asl, S. Rouhi, Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nano composite fabricated via friction stir processing, Materials Science and Engineering A, Vol. 645, No. 1, pp. 40–46, 2015.
[20] I. Dinaharan, R. Nelson, S. J. Vijay, E. T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization, Vol. 118, No. 1, pp. 149-158, 2017.
[21] F. Khodabakhshi, A. Simchi, A. H. Kokabi, M. Sadeghahmadi, A. P. Gerlich, Reactive friction stir processing of AA 5052 –TiO2 nanocomposite: process microstructure mechanical characteristics, Materials Science and Technology, Vol. 31, No. 4, pp. 426-436, 2015.
[22] S. C. Tjong, Novel nanoparticle reinforced metal matrix composites with enhanced mechanical properties, Advanced Engineering Materials, Vol. 8, No. 1, pp. 639–652, 2007.
[23] A. Mostafapour, S. T. Khandani, Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method, Materials Science and Engineering A, Vol. 559, No. 1, pp. 549-557, 2013.
[24] A. Heidarpour, S. Ahmadifard, Sh. Kazemi, Fabrication and characterization of Al5083/Al2O3 surface nanocomposite via friction stir processing, Advanced Materials and Processing, Vol. 5, No. 2, pp. 11-24, 2017.
[25] L. Raju, Suvarna, A. Kumar, Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing, Defence Technology, Vol. 15, No. 2, pp. 1-9, 2014.
[26] S. Ahmadifard, Sh. Kazemi, A. Heidarpour, Fabrication of Al5083/TiO2 surface composite by friction stir process and investigating its microstructural, mechanical and wear properties, Modares Mechanical Engineering, Vol. 15, No. 12, pp. 55-62, 2015. (in Persian فارسی(
[27] R. Bauri, D. Yadav, G. Suhas, Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite, Materials Science and Engineering A, Vol. 528, No. 13-14, pp. 4732-4739, 2011.
[28] D. Davidson, B. Shiloh, S. Neelakrishnan, Influnce of friction stir welding parameters on tenslie properties of AA8011 Aluminium alloy plate, Computation and Theoretical Nanoscience, Vol. 15, No. 1, pp. 93–98, 2018.
[29] C. Meng, H. C. Cui, G. Lu, X. H. Tang, Evolution behavior of TiB2 particles during laser welding on aluminum metal matrix composites reinforced with particles, Transactions of Nonferrous Metals Society of China, Vol. 23, No. 6, pp. 1543-1548, 2013.
[30] M. M. El-Sayed, A. Y. Shash, M. Abd Rabou, Influence of the welding speeds and chancing the tool pin profile on the Friction Stir welding AA5083-O joins, Welding and Joining, Vol. 35, No. 3, pp. 44- 51, 2017.
[31] D. Khayyamin, A. Mostafapour, R. Keshmiri, The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP, Materials Science and Engineering A, Vol. 559, No. 9, pp. 217–221, 2013.
[32] S. A. Alidokht, A. Abdollah-zadeh, S. Soleymani, H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Materials and Design, Vol. 32, No. 5, pp. 2727-2733, 2011.
[33] R. Kapoor, K. Kandasamy, R. S. Mishra, J. A. Baumann, G. Grant, Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy, Materials Science and Engineering A, Vol. 561, No. 1, pp. 159–166, 2013.
[34] S. Suresha, B. K. Sridhara, Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates, Composites Science and Technology, Vol. 70, No. 11, pp. 1652-1659, 2010.
[35] A. Devaraju, B. Kumar, Kotiveerachari, Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing, Materials and Design, Vol. 45, No. 1, pp. 576-585, 2013.
[36] Y. Morisada, T. Nagaoka, M. Fukusumi, MWCNTs/AZ31 surface composites fabricated by friction stir processing, Materials Science and Engineering A, Vol. 419, No. 1-2, pp. 344-348, 2006.
[37] S. Ahmadifard, M. Roknian, T. Tinati Seresht, Sh. Kazemi, Fabrication of hybrid nanocomposite Al2024/Gr/ZrO2 via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties, Modares Mechanical Engineering, Vol. 16, No. 6, pp. 119-126, 2016. (in Persian فارسی(
[38] L. Dinaharan, S. Saravanakumar, K. Kalaiselvan, S. Gopalakrishnan, Microstructure and sliding wear characterization of Cu/TiB2 coppermatrix composites fabricated via friction stir processing, Asian Ceramic Societies, Vol. 5, No. 3, pp. 295-303, 2017.
[39] M. Azadi, M. Shamanian, M. A. Golozar, Hardness and wear behavior of Al7075/TiC/MoS2 surface hybrid composite produced by friction stir processing, Surface Science and Engineering, Vol. 13, No. 31, pp. 41-51. 2017. (in Persian فارسی(