مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

دلایل تفاوت نتایج مدل‌های یکفازی و دوفازی در انتقال حرارت نانوسیالات

نویسندگان
1 دانشگاه رازی
2 دانشگاه صنعتی امیرکبیر
چکیده
در این مقاله انتقال حرارت مزدوج نانوسیالات در یک میکروکانال موجی شکل با استفاده از مدل یکفازی به روش همگن و مدل دوفازی به روش اویلری-لاگرانژی بصورت عددی بررسی و تفاوت نتایج با استفاده از تحلیل های فیزیکی مطالعه شده است. سیال پایه آب و نانوذرات از دو جنس اکسید آلومینیوم و مس است. غلظت حجمی نانوذرات تا 2% و قطر آنها 100 نانومتر است. معادلات سه بعدی حاکم شامل پیوستگی، ممنتوم و انرژی در سیال از دیدگاه اویلری به روش حجم کنترل (سیمپل) حل شده‌اند. معادلات حاکم بر حرکت و انرژی ذرات نیز به روش لاگرانژی جداسازی و به روش رنگ-کوتای مرتبه 4 حل شده‌اند. چون در روش لاگرانژی معادلات حرکت در سه بعد و معادله انرژی برای تک‌تک ذرات حل می‌شود، از روش پردازش موازی و با استفاده از ابر کامپیوتر این معادلات حل شده‌اند. نتایج نشان می‌دهند که تحت تاثیر نیروی درگ توزیع ذرات بصورت همگن نیست و این موضوع منشا اختلاف نتایج روش همگن و مدل دوفازی است. توزیع ناهمگن ذرات بر میدانهای سرعت و دما نیز تاثیر می‌گذارد و باعث می-شود نتایج حاصل از مدل دوفازی متفاوت از نتایج مدل یکفازی (همگن) شود و در بعضی حالات این اختلاف به حدود 20% نیز می‌رسد.
کلیدواژه‌ها

عنوان مقاله English

The Reasons of Differences between one phase and two phase Models of Nanofluids Heat Transfer Characteristics

نویسندگان English

Javad Rostami 1
Abbas Abbassi 2
majid safar avval 2
1 Razi university
2 Amirkabir university of technology
چکیده English

in this paper, conjugate heat transfer in wavy microchannels filled with nanofluid is studied numerically. Homogeneous single-phase models underestimate the experimental results. Then, nanofluid simulated by two-phase model using an Eulerian-Lagrangian approach. Nanofluids are water-Cu or water-Al2O3 suspensions with a particle diameter of 100-150nm and a volume fraction of up to 2%. The three-dimensional governing equations including continuity, Navier-Stokes and energy equations are solved by the well-known SIMPLE method. The governing equations for particles are solved by a 4th order Runge-Kutta algorithm. due to the 3-D governing equation four equations includinf velocity components and energy should be solved for all particles. the computer program has been written in parallel processing method (MPI). Then a super computer with several CPU,s should be used. In one phase model there some supposes, one of them is that the velocty and temperature of a particle is equal to the velocity and temperature of its surrounding fluid. But the main suppose is that the particle distribution is homogeneous. Results show that the main reason of difference between the results of Homogeneous single-phase models and two-phase model is non-homogeneous particle distribution in the domain.

کلیدواژه‌ها English

Nanofluid
one phase model
homogeneous method
two-phase model
Eulerian-Lagrangian method
[1] S. E. B. Maiga, C. T. Nguyen, N.Galanis, G. Roy,T. Mare, M. Coqueux, Heat transfer enhancement in turbulent tube flow using Al2O3nanoparticle suspension, International Journal of Numerical Method for Heat and Fluid Flow, Vol. 16, No. 3, pp. 275-292, 2006.
[2] H. Patel, T.Sundararajan, T.Pradeep, A. Dasgupta,N. Dasgupta, S. K. Das, A micro-convection model for thermal conductivity of nanofluids, Journal of Physics, Vol. 65, No. 5, pp. 863-869, 2005.
[3] H. C. Brinkman, The viscosity of concentrated suspension and solution, the Journal of Chemical Physics,Vol. 20, No. 4, pp. 571-581, 1952.
[4] C. Chon,K. Kihm,S. Lee, S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid Al2O3 thermal conductivity enhancement, Applied Physics Letter, Vol. 87, No. 15, ID:153107, 3 pages, 2005
[5] M. Corcione, Empirical Correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, Vol. 52, pp. 789-793, 2011.
[6] A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat and Fluid Flow, Vol. 28, No. 2, pp. 211-219, 2007.
[7] N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, Journal of Physics (D: Applied Physics), Vol. 42, No. 5, pp. 55501-55506, 2009.
[8] M. Akbari, N. Galanis, A.Behzadmehr, Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,International Journal of Thermal Sciences, Vol. 50, No. 8, pp. 1343-1354, 2011.
[9] J. Rostami, A. Abbassi, Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method, Advanced Powder Technology, Vol. 27, No. 1, pp. 9-18, 2016.
[10] M. Mirzaei, M. Saffar-Avval, H.Naderan, Heat transfer investigation of laminar developing flow of nanofluidsin a Microchannel Based On EulerianLagrangian Approach, The Canadian Journal of Chemical Engineering, Vol. 92, No. 6, pp. 1139-1149, 2014.
[11] V. Bianco, F. Chiacchio, O. Manca,S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes, Applied Thermal Engineering, Vol. 29, No. 17-18, pp. 3632-3642, 2009.
[12] D. Wen, L. Zhang, Y. He, Flow and migration of nanoparticle in a single channel, Heat and Mass Transfer, Vol. 45, No. 8, pp. 1061-1067, 2009.
[13] Y. He, Y. Men, Y. Zhao, H. Lu, Y. Ding, Numerical investigation into the convective heat transferof TiO2 Nanofluidsflowing through a straight tube under the laminar flow conditions, Applied Thermal Engineering,Vol. 29, No. 10, pp. 1965-1972, 2009.
[14] F. O. Tolentino, R. R. Mendez, H. Guerrero, B. G. Palomares, Experimental study of fluid flow in the entrance of a sinusoidal channel, International Journal of Heat and Fluid Flow, Vol. 29, No. 5, pp.1233-1239, 2008.
[15] J. Rostami, A.Abbassi, M. Saffar-Avval, Optimization of conjugate heat transfer in wavy walls microchannels, Applied Thermal Engineering, Vol. 82, pp. 318-328, 2015.
[16] S. Goktepe, K. Atalik, H. Erturk, Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube, International Journal of Thermal Sciences, Vol. 80, pp. 83-92, 2014.
[17] I. Behroyan, P. Ganesan, S. He, S. Sivasankaran, Turbulent forced convection of Cu–water nanofluid: CFD model comparison, International Communications in Heat and Mass Transfer, Vol. 67, pp. 163-172, 2015.
[18] M. Raisee, Computation of Flow and Heat Transfer Through Two- and Three-Dimensional Rib-Roughed Passages, PhD Thesis, Department of Mechanical Engineering, University of Manchester (UMIST), 1999.
[19] M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Eulerian-Eulerian twophase numerical simulation of nanofluid lamina forced convection in a microchannel, International Journal of Heat and Fluid Flow, Vol. 32, No. 1, pp. 107-116, 2011.
[20] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806, 1972.
[21] D. B. Spalding, A novel finite difference formulation for differential expressions involving both first and second derivatives, Journal of Numerical Methods for Engineering, Vol. 4, No. 4, pp. 551-559, 1972.
[22] C. M. Rhie, W. L. Chow, Numerical study of the turbulent flow past an airfoil with trading edge separation, AIAA Journal, Vol. 21, No. 11, pp. 1525-1535, 1983.
[23] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer, Vol. 128, No.3, pp. 240-250, 2006.