مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مقایسه‌ی فرآیند عیب‌یابی با الگوریتم‌های مختلف بهینه‌کننده‌ی جستجو در المان‌های مسطح سه بعدی بر مبنای مشخصات دینامیکی سازه

نویسندگان
1 عضو هیئت علمی(استاد) دانشکده عمران دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2 دانشگاه صنعتی امیرکبیر
چکیده
وقوع خرابی در سیستم‌های سازه‌ای و مکانیکی در طول سرویس‌دهی، اجتناب‌ناپذیر است. پایش سلامت و عیب‌یابی این سیستم‌ها به ‌نوبه‌ی خود می‌تواند از تلفات جانی و مالی جلوگیری کند. از مهم‌ترین روش‌های پایش سلامت و عیب‌یابی روش‌های مبتنی بر مشخصات ارتعاشی سازه می‌باشد، که بدون تمرکز بر نواحی خاص، سازه را مورد پایش کلی قرار می‌دهد. در این مطالعه جهت عیب‌یابی سازه‌های صفحه‌ای، با بهره‌گیری از تکنیک کاهش ابعاد داده‌ها توسط تحلیل اجزای اصلی، توابع پاسخ فرکانسی کاهش بعد داده شده، و شاخص‌هایی به‌عنوان شاخص خرابی معرفی گشته است. این شاخص‌های خرابی و عیب‌یابی صفحه به‌صورت یک مسئله بهینه‌سازی مطرح شده، و پس از آن با استفاده از الگوریتم‌های اجتماع ذرات و ژنتیک به حل مسئله بهینه‌سازی پرداخته شده است. با حل مسئله بهینه‌سازی مکان و شدت‌های خرابی تشخیص داده می‌شوند. برای ارزیابی و کارکرد روش ارائه شده و عملکرد الگوریتم‌های معرفی شده، چندین سناریوی خرابی شامل خرابی در یک ناحیه، خرابی هم‌زمان در دو ناحیه، و خرابی در سه ناحیه از سازه اعمال شده است، و بر این مبنا در مورد کارایی و کارکرد روش ارائه شده بحث می‌گردد. بر اساس نتایج حاصله، مشاهده شده که الگوریتم اجتماع ذرات در بحث تعیین شدت خرابی نسبت به الگوریتم ژنتیک از عملکرد و دقت بالایی برخوردار است. در سناریوهای پیچیده‌تر این افزایش دقت و کارایی بهتر بیشتر نمایان می‌شود.
کلیدواژه‌ها

عنوان مقاله English

Damage detection process comparison using various optimization algorithms in 3D plane elements based on dynamics properties of structure

نویسندگان English

mohammad mehdi alina 1
seyed vahid sepehr mousavi 2
javad amanabadi 2
1 Professor, Department of civil engineering, Amirkabir University of Technology
2 amirkabir university of technology
چکیده English

Damage occurrence in structural and mechanical systems during utilization is an inevitable phenomenon. Death and financial losses could be prevented by health monitoring systems and damage detection processes in structures. In the mentioned framework, damage detection based on dynamics properties, is one of the most important and efficient methods, without concentration on special zones in structure. In this study frequency response functions were analyzed by principle component analysis, then, in order to complete process, dimension reduction and damage indices extraction were conducted. At the end, plate damage detection was introduced as an optimization problem considering extracted damage indices, and solution of the problem were given by PSO and Genetic algorithms. Output results consist of estimation about location and intensity of applied damage. Several scenarios including single, simultaneously dual and triple stiffness losses were figured out to investigate and evaluate the efficiency of the mentioned algorithms. Finally, outcome result around performance and utility of method had been discussed. It's obviously demonstrated that Particle Swarm Optimization algorithm has more accurate result, especially in estimation of damage location than Genetic algorithm optimization solution, during health monitoring processes. The mentioned conclusion has been gotten more explicit with getting scenario complicated.

کلیدواژه‌ها English

Damage detection
Principle Component Analysis
Frequency Response Function
Pso algorithm
genetic algorithm
[1] C. R. Farrar, K. Worden, An introduction to structural health monitoring, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 365, No. 1851, pp. 303-315, 2007.
[2] M. K. Soderqvist, M. Veljola, Finnish project level bridge management system, Transportation Research Board Circular 498, 1999.
[3] J. J. Zhao, D. E. Tonias, Bridge Engineering: Design, Rehabilitation, and Maintenance of Modern Highway Bridges, Fourth Edittion, pp. 88-97, New York: McGraw-Hill, 2017.
[4] M. M. F. Yuen, A numerical study of the eigenparameters of a damaged cantilever, Journal of Sound and Vibration, Vol. 103, No. 3, pp. 301-310, 1985.
[5] J. H. Kim, H. S. Jeon, C. W. Lee, Applications of the modal assurance criteria for detecting and locating structural faults, in Proceeding of Sem Society for Experimental Mechanics Inc, pp. 536-536. 2012.
[6] W. Xu, M. Cao, W. Ostachowicz, M. Radzieński, N. Xia, Two-dimensional curvature mode shape method based on wavelets and Teager energy for damage detection in plates, Journal of Sound and Vibration, Vol. 347, pp. 266-278, 2015.
[7] Z. Wang, R. Lin, M. Lim, Structural damage detection using measured FRF data, Computer Methods in Applied Mechanics and Engineering, Vol. 147, No. 1-2, pp. 187-197, 1997.
[8] D. Huynh, J. He, D. Tran, Damage location vector: A non-destructive structural damage detection technique, Computers & Structures, Vol. 83, No. 28, pp. 2353-2367, 2005.
[9] L. Yam, Y. Li, W. Wong, Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches, Engineering Structures, Vol. 24, No. 11, pp. 1465-1475, 2002.
[10] W. Fan, P. Qiao, Vibration-based damage identification methods: a review and comparative study, Structural Health Monitoring, Vol. 10, No. 1, pp. 83- 111, 2011.
[11] J. Xiang, M. Liang, A two-step approach to multi-damage detection for plate structures, Engineering Fracture Mechanics, Vol. 91, pp. 73-86, 2012.
[12] Y. Zhang, L. Wang, S. T. Lie, Z. Xiang, Damage detection in plates structures based on frequency shift surface curvature, Journal of Sound and Vibration, Vol. 332, No. 25, pp. 6665-6684, 2013.
[13] Z. B. Yang, X. F. Chen, Y. Xie, X. W. Zhang, The hybrid multivariate analysis method for damage detection, Structural Control and Health Monitoring, Vol. 23, No. 1, pp. 123-143, 2016.
[14] I. A. Nhamage, R. H. Lopez, L. F. F. Miguel, An improved hybrid optimization algorithm for vibration based-damage detection, Advances in Engineering Software, Vol. 93, pp. 47-64, 2016.
[15] R. V. Farahani, D. Penumadu, Damage identification of a full-scale fivegirder bridge using time-series analysis of vibration data, Engineering Structures, Vol. 115, pp. 129-139, 2016.
[16] W. Weaver Jr, P. R. Johnston, Structural Dynamics by Finite Elements, pp. 452-520., Australia: Prentice-Hall Englewood Cliffs (NJ), 1987.
[17] I. T. Jolliffe, Principal Component Analysis, Second Edition, pp. 75-97., London, UK: Wiley Online Library, 2002.
[18] Y. Ni, X. Zhou, J. Ko, Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks, Journal of Sound and Vibration, Vol. 290, No. 1, pp. 242- 263, 2006.
[19] S. Mohan, D. K. Maiti, D. Maity, Structural damage assessment using FRF employing particle swarm optimization, Applied Mathematics and Computation, Vol. 219, No. 20, pp. 10387-10400, 2013.
[20] R. Kennedy, J. Eberhart, Particle swarm optimization, Proceedings of The International Conference on IEEE, Perth, Australia, 27 Nov-1 Dec, 1995.
[21] D. A. Coley, An Introduction to genetic Algorithms for Scientists and Engineers pp. 165-185, HongKong: World Scientific Publishing Co Inc, 1999.