مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی اثر خواص ویسکوالاستیک سیال فوق همرفتی ماکسول بر ناپایداری سافمن-تیلور امتزاج ناپذیر

نویسندگان
1 دانشکده مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران
2 دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود
چکیده
در این مقاله، ناپایداری سافمن-تیلور درجا‌به‌جایی مخلوط‌نشدنی ویسکوالاستیک-نیوتنی در یک سلول هل-شاو، برای اولین بار به صورت عددی مورد بررسی قرار گرفته است. در شبیه‌سازی عددی از روش حجم سیال (VOF) برای پیش‌بینی تغییر شکل دو فاز استفاده شده است. سیال ویسکولاستیک با ویسکوزیته‌ی کمتر به عنوان فاز جا‌به‌جا کننده و سیال نیوتنی با ویسکوزیته‌ی بیش‌تر به عنوان فاز جا‌به‌جا شونده در نظر گرفته شده و معادله ساختاری فوق‌همرفتی ماکسول برای شبیه‌سازی سیال ویسکوالاستیک به کار رفته است. در این تحقیق اثر پارامتر‌های بی‌بعد شامل، نسبت تحرک، عدد الاستیسیته و عدد مویینگی در ناپایداری سافمن-تیلور مطالعه شده و در این راستا از کانتور-های فاز و نمودار بازده جاروبی استفاده شده است. نتایج نشان می‌دهد، افزایش عدد مویینگی و عدد الاستیسیته و همچنین کاهش نسبت تحرک باعث پایدار‌تر شدن جریان می‌شود. همچنین می‌توان یافت، تغییرات پارامتر‌های مورد نظر اثری چشم‌گیر روی کانتور‌های فاز و مکانیزم‌های موجود در پدیده‌ی انگشتی لزج دارد. نتایج این تحقیق می-تواند در فرایند ازدیاد برداشت نفت، برای استفاده در روش ‌های تزریق مایعات پلیمری بسیار موثر باشد. به عنوان یک نتیجه اصلی در این پژوهش مشاهده می‌شود، خاصیت الاستیک در سیال ویسکوالاستیک جا‌به‌جا کننده، در حضور نیرو‌های مویینگی اثری پایدار‌کننده روی جریان ناپایداری سافمن-تیلور دارد.
کلیدواژه‌ها

عنوان مقاله English

A numerical study on the effects of viscoelastic properties of upper convected Maxwell fluid on immiscible Saffman-Taylor instability

نویسندگان English

Alie Abbasi-Yazdi 1
Mahmood Norouzi 2
1 Department of mechanical engineering, Shahrood university of technology, Shahrood, Iran
2 Mechanical Engineering Department, Shahrood University of Technology, Shahrood
چکیده English

In this paper, Saffman-Taylor instability of an immiscible displacement in a Hell-Shaw cell is studied numerically for the first time. The VOF method is used for two phases flow simulation. Viscoelastic fluid with less viscosity is considered as the displacing fluid and Newtonian fluid with high viscosity is used as the displaced fluid. The upper convected Maxwell constitutive equation is applied to simulate the viscoelastic fluid. In this research, the effects of dimensionless parameters consisting of the mobility ratio, elasticity number and capillary number are studied and the sweep efficiency diagram is depicted. The results show that, increasing the elasticity number and capillary number, and decreasing the mobility ratio can stabilize the flow. It is also found that, changing these parameters has a significant effect on the phase contours and mechanisms of viscous fingering patterns. The results of this numerical study could be helpful for enhanced oil recovery process, especially in polymer flooding technique. As a main consequence, it is concluded that, the elastic properties of displacing viscoelastic fluid in the presence of capillary forces has a stabilizing effect on the flow instability.

کلیدواژه‌ها English

Saffman-Taylor instability
Immiscible displacement
Viscous fingering
Viscoelastic fluid
Upper convected Maxwell model
[1] S. Hill, Channeling in packed columns, Chemical Engineering Science, Vol. 1, No. 6, pp. 247-253, 1952.
[2] P. G. Saffman, G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Dynamics of Curved Fronts, pp. 312-329, 1958.
[3] P. Saffman, Viscous fingering in Hele-Shaw cells, Journal of Fluid Mechanics, Vol. 173, No. 3, pp. 73-94, 1986.
[4] G. Taylor, Cavitation of a viscous fluid in narrow passages, Journal of Fluid Mechanics, Vol. 16, No. 04, pp. 595-619, 1963.
[5] J. Sheng, Modern Chemical Enhanced Oil Recovery: Theory and Practice, pp. 423-440, Elsevier, Gulf Professional Publishing, 2010.
[6] D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, pp. 153-170, Cambridge, Cambridge University Press, 1999.
[7] A. Aldushin, B. Matkowsky, Instabilities, fingering and the Saffman-Taylor problem in filtration combustion, Combustion Science and Technology, Vol. 133, No. 4-6, pp. 293-341, 1998.
[8] G. M. Homsy, Viscous fingering in porous media, Annual Review of Fluid Mechanics, Vol. 19, No. 1, pp. 271-311, 1987.
[9] R. Marshall, A. Metzner, Flow of viscoelastic fluids through porous media, Industrial & Engineering Chemistry Fundamentals, Vol. 6, No. 3, pp. 393- 400, 1967.
[10] E. Allen, D. Boger, The influence of rheological properties on mobility control in polymer-augmented waterflooding, Proceeding of Society of Petroleum Engineers, 1988.
[11] D. Bonn, H. Kellay, M. B. Amar, J. Meunier, Viscous finger widening with surfactants and polymers, Physical Review Letters, Vol. 75, No. 11, pp. 2132, 1995.
[12] A. Lindner, D. Bonn, E. C. Poiré, M. B. Amar, J. Meunier, Viscous fingering in non-Newtonian fluids, Journal of Fluid Mechanics, Vol. 469, No. 1, pp. 237-256, 2002.
[13] S. Malhotra, M. M. Sharma, Impact of fluid elasticity on miscible viscous fingering, Chemical Engineering Science, Vol. 117, No. 12 pp. 125-135, 2014.
[14] J. Nittmann, G. Daccord, H. E. Stanley, Fractal growth of viscous fingers: quantitative characterization of a fluid instability phenomenon, Nature, Vol. 314, No. 6007, pp. 141-144, 1985.
[15] S. Wilson, The Taylor–Saffman problem for a non-Newtonian liquid, Journal of Fluid Mechanics, Vol. 220, No. 5, pp. 413-425, 1990.
[16] B. Ebrahimi, S. M. Taghavi, K. Sadeghy, Two-phase viscous fingering of immiscible thixotropic fluids: A numerical study, Journal of Non-Newtonian Fluid Mechanics, Vol. 218, No. 1, pp. 40-52, 2015.
[17] M. R. Shoghi, M. Norouzi, Linear stability analysis and nonlinear simulation of non-Newtonian viscous fingering instability in heterogeneous porous media, Rheologica Acta, Vol. 54, No. 11-12, pp. 973-991, 2015.
[18] H. Shokri, M. Kayhani, M. Norouzi, Nonlinear simulation of viscoelastic fingering instability, Modares Mechanical Engineering, Vol. 16, No. 8, pp. 47-54, 2016. (in Persian فارسی(
[19] H. Shokri, M. Kayhani, M. Norouzi, Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids, Physics of Fluids, Vol. 29, No. 3, pp. 033101, 2017.
[20] J. C. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, pp. 1846-1862, CUP Archive, Cambridge, Cambridge university press, 1990.
[21] C. W. Hirt, B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, Vol. 39, No. 1, pp. 201-225, 1981.
[22] O. Ubbink, R. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics, Vol. 153, No. 1, pp. 26-50, 1999.
[23] S. Vaezi, Experimental Investigation of Elastic Properties Effects on Viscous Fingering Instability, PhD Thesis, Department Of Mechanical Engineering, shahrood univercity, Shahrood, 2015. (in Persian فارسی(
[24] M. Islam, J. Azaiez, Fully implicit finite difference pseudo‐spectral method for simulating high mobility‐ratio miscible displacements, International Journal for Numerical Methods in Fluids, Vol. 47, No. 2, pp. 161-183, 2005.
[25] M. R. Shoghi, M. Norouzi, Nonlinear simulation of non-Newtonian viscous fingering instability in anisotropic porous media, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 415-425, 2015. (in Persian فارسی(
[26] H. Shokri, M. Kayhani, M. Norouzi, Saffman–Taylor instability of viscoelastic fluids in anisotropic porous media, International Journal of Mechanical Sciences, 2018.
[27] S. Khatibi, A. Khaleghi, M. Norouzi, An experimental investigation on viscous fingering instability of Newtonian fluid in transparent porous media with compact structure consisting of glass beads, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 245-253, 2017. (in Persian فارسی(
[28] C. Tan, G. Homsy, Simulation of nonlinear viscous fingering in miscible displacement, Physics of Fluids (1958-1988), Vol. 31, No. 6, pp. 1330-1338, 1988.
[29] W. Zimmerman, G. Homsy, Three‐dimensional viscous fingering: A numerical study, Physics of Fluids A: Fluid Dynamics (1989-1993), Vol. 4, No. 9, pp. 1901-1914, 1992.
[30] K. Ghesmat, J. Azaiez, Viscous fingering instability in porous media: effect of anisotropic velocity-dependent dispersion tensor, Transport in Porous Media, Vol. 73, No. 3, pp. 297-318, 2008.
[31] J. Azaiez, B. Singh, Stability of miscible displacements of shear thinning fluids in a Hele-Shaw cell, Physics of Fluids (1994-present), Vol. 14, No. 5, pp. 1557-1571, 2002.
[32] M. Norouzi, M. Shoghi, A numerical study on miscible viscous fingering instability in anisotropic porous media, Physics of Fluids, Vol. 26, No. 8, pp. 084102, 2014.
[33] C. T. Tan, G. Homsy, Viscous fingering with permeability heterogeneity, Physics of Fluids A: Fluid Dynamics (1989-1993), Vol. 4, No. 6, pp. 1099- 1101, 1992.
[34] M. Denn, K. Porteous, Elastic effects in flow of viscoelastic liquids, The Chemical Engineering Journal, Vol. 2, No. 4, pp. 280-286, 1971.
[35] S. Mora, M. Manna, from viscous fingering to elastic instabilities, Journal of Non-Newtonian Fluid Mechanics, Vol. 173, No. 2, pp. 30-39, 2012.