مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل ترمودینامیکی و بهینه‌سازی یک سیستم نوین ترکیبی پیل سوختی اکسید جامد با گازساز زیست توده و لوله‌های حرارتی

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران
2 هیئت علمی دانشگاه ارومیه
3 استادیار دانشکده مکانیک دانشگاه ارومیه
چکیده
در تحقیق حاضر، یک سیستم ترکیبی جدید، متشکل از گازساز زیست توده، لوله‌های حرارتی دما بالای سدیم و پیل سوختی اکسید جامد معرفی شده است. سیستم ترکیبی حاصل، به علت بازده و توان بالا به منظور تولید همزمان توان الکتریکی و حرارت مورد توجه قرار گرفته است. از ثابت‌های تعادل و قانون بقای جرم و انرژی برای مدل‌سازی سیستم استفاده شده و مدل‌سازی و تجزیه و تحلیل سیستم در نرم افزار EES انجام گرفته است. پس از حصول اطمینان از صحت مدل‌سازی انجام گرفته در تطابق با نتایج تجربی، اثر STBR گازساز، چگالی جریان، ضریب مصرف سوخت و دمای خروجی پیل سوختی به عنوان پارامترهای متغیر بر روی توان تولیدی و بازده کلی سیستم توسط روش رویه پاسخ بررسی گردید. نتایج تحلیل واریانس نشان داد که پارامترهای ضریب مصرف سوخت (با میزان تاثیرگذاری 53%) و چگالی جریان (با میزان تاثیرگذاری 33%) به ترتیب موثرترین پارامتر بر روی توان خروجی سیستم و بازده انرژی کلی می‌باشند. با افزایش دما، توان سیستم ترکیبی افزایش می‌یابد در حالیکه با افزایش ضریب مصرف سوخت، توان خروجی از سیستم رفتار افزایشی و سپس کاهشی دارد. همچنین افزایش دما و STBR سبب افزایش بازده کلی سیستم و افزایش چگالی جریان و ضریب مصرف سوخت موجب کاهش آن می‌شود. نتایج حاصله نشان داد که در بهینه‌ترین حالات با تنظیم صحیح پارامترهای موثر، توان خروجی سیستم و بازده کلی را می‌توان به ترتیب تا مقادیر 300 kW و 90% افزایش داد.
کلیدواژه‌ها

عنوان مقاله English

The thermodynamic analysis and optimization of a novel integrated solid oxide fuel cell system with biomass gasification and heat pipes

نویسندگان English

Parisa Mojaver 1
Shahram Khalilarya 2
Ata Chitsaz Khoyi 3
1 Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Irna
2 professor at mechanical engineering college of Urmia university
3 Assistant professor at mechanical engineering college of Urmia university
چکیده English

In the present study, a novel integrated system containing biomass gasifier, sodium high-temperature heat pipes, and solid oxide fuel cells is introduced. The integrated system is taken into consideration due to its high efficiency and power in order to simultaneous producing electrical power and heat. The modeling of system is performed using equilibrium constants, mass and energy conservation law and the analysis of codes is done in EES software. The effect of gasifier STBR, current density, fuel utilization factor, and outlet fuel cell’s temperature as variable parameters is investigated on the power and total energy efficiency of integrated system using response surface method; after validation of modeling in comparison to the experimental results. The analysis of variance results indicate that fuel utilization factor (with 53% contribution) and current density (with 33% contribution) are the most effective parameter on the power and total efficiency, respectively. The power of integrated system is increased by increasing of temperature while power has an increasing behavior follows by decreasing behavior by increasing fuel utilization factor. The total efficiency is increased by increasing temperature and STBR while it is decreased by increasing current density and fuel utilization factor. The results revealed that the power and total efficiency is obtained at optimum states as high as 300 kW and 90%, respectively.

کلیدواژه‌ها English

Solid oxide fuel cell
Gasifier
Biomass
Heat pipe
Response surface method
[1] I. Dincer, Renewable energy and sustainable development: a crucial review, Renewable and Sustainable Energy Reviews, Vol. 4, No. 2, pp.157-175, 2000.
[2] R. O'hayre, S. W. Cha, F. B. Prinz, W. Colella, Fuel cell Fundamentals, pp. 207-246, New Jersey, John Wiley & Sons, 2016.
[3] T. S. Lee, J. N. Chung, Y. C. Chen, Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling,Energy Conversion and Management, Vol. 52, No. 10, pp.3214- 3226, 2011.
[4] T. Bridgwater, Biomass for energy, Journal of the Science of Food and Agriculture, Vol. 86, No. 12, pp.1755-1768, 2006.
[5] C. B. Field, J. E. Campbell, D. B. Lobell, Biomass energy: the scale of the potential resource, Trends in Ecology & Evolution, Vol. 23, No. 2, pp.65-72, 2008.
[6] S. Dasappa, P. J. Paul, H. S. Mukunda, N. K. S. Rajan, G. Sridhar, H. V. Sridhar, Biomass gasification technology–a route to meet energy needs, Current Science, Vol. 87, No. 7, pp.908-916, 2004.
[7] B. Zohuri, Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, pp. 117-157, New York, Springer, 2016.
[8] M. Sayyahi, M. Mamourian, M. Ghafari, Experimental investigation of the influence of nanofluid on the heat performance of pulsating heat pipe, Modares Mechanical Engineering, Proceedings of the Second International Conference on Air-Conditioning, Heat and Cooling Installations, Vol. 16, No. 13, pp. 162-165, 2016. (in Persian فارسی(
[9] M. Alisadeghi, J. Fazilati, Optimization of honeycomb impact attenuator using genetic algorithm based on response method and design of experiments; Part I: crashworthiness, Modares Mechanical Engineering, Vol. 15, No. 12, pp. 25-36, 2015. (in Persianفارسی(
[10] M. Mohammadi, J. Arghavani, One-dimensional modeling and optimization of two-stage light gas launcher with response surface methodology, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 129-139, 2016. (in (فارسی P‏ersian
[11] M. Yari, A.S. Mehr, S.M.S. Mahmoudi, M. Santarelli, A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester, Energy, Vol. 114, No. 1, pp.586-602, 2016.
[12] A. Chitsaz, J. Hosseinpour, M. Assadi, Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; A comparative study, Energy, Vol. 124, No. 1, pp.613-624, 2017.
[13] J. Hosseinpour, M. Sadeghi, A. Chitsaz, F. Ranjbar, M. A. Rosen, Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine, Energy Conversion and Management, Vol. 143, No. 1, pp.448-458, 2017.
[14] M.A. Farzad, H. Hassanzadeh, Modeling and optimization of a single planar solid oxide fuel cell, Modares Mechanical Engineering, Vol. 15, No. 2, pp. 81-91, 2015. (in Persian فارسی(
[15] J. Jia, A. Abudula, L. Wei, B. Sun, Y. Shi, Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system, Renewable Energy, Vol. 81, No. 1, pp.400-410, 2015.
[16] L. Fryda, K. D. Panopoulos, J. Karl, E. Kakaras, Exergetic analysis of solid oxide fuel cell and biomass gasification integration with heat pipes, Energy, Vol. 33, No. 2, pp.292-299, 2008.
[17] H. Hassanpour, M. H. Sadeghi, A. Rasti, Investigation of microhardness and white layer in milling of hardened steel using response surface methodology, Modares Mechanical Engineering, Vol. 15, No. 12, pp. 175-182, 2015. (in (فارسی P‏ersian
[18] H. Khozeymeh-Nezhad, H. Niazmand, A numerical and entropy analysis of viscous micropump with an elliptic rotor by LBM and micropump optimization by RSM, Modares Mechanical Engineering, Vol. 17, No. 3, pp. 343-354, 2017. (in Persianفارسی(
[19] M. Zohoor, S. M. Mousavi, Evaluation and optimization of drawing depth in electrohydraulic forming (with bridge wire between electrodes), Modares Mechanical Engineering, Vol. 17, No. 9, pp. 137-144, 2017. (in (فارسی P‏ersian
[20] H. Heydari, M. Zolfaghari, N. Asadipoor, Providing and analytical model and experimental study of the behavior of cortical bone drilling the thrust force, Modares Mechanical Engineering, Vol. 17, No. 5, pp. 175-184, 2017. (in Persianفارسی(
[21] C. Loha, P. K. Chatterjee, H. Chattopadhyay, Performance of fluidized bed steam gasification of biomass–modeling and experiment, Energy Conversion and Management, Vol. 52, No. 3, pp.1583-1588, 2011.
[22] S. H. Chan, H. K. Ho, Y. Tian, Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of Power Sources, Vol. 109, No. 1, pp.111-120, 2002.
[23] C. O. Colpan, I. Dincer, F. Hamdullahpur, Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas, International Journal of Hydrogen Energy, Vol. 32, No. 7, pp.787-795, 2007.
[24] U. G. Bossel, Final Report on SOFC Data Facts and Figures, Swiss Federal Office of Energy, Berne, pp. 1-10, 1992.
[25] F. Ranjbar, A. Chitsaz, S. M. S. Mahmoudi, S. Khalilarya, M. A. Rosen, Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell, Energy Conversion and Management, Vol. 87, No. 1, pp.318-327, 2014.
[26] J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, Polarization effects in intermediate temperature, anode‐supported solid oxide fuel cells, Journal of the Electrochemical Society, Vol. 146, No. 1, pp.69-78, 1999.
[27] C. O. Colpan, F. Hamdullahpur, I. Dincer, Y. Yoo, Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems, International Journal of Hydrogen Energy, Vol. 35, No. 10, pp.5001-5009, 2010.
[28] S. Campanari, P. Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry, Journal of Power Sources, Vol. 132, No. 1, pp.113-126, 2004.
[29] S. H. Chan, C. F. Low, O. L. Ding, Energy and exergy analysis of simple solid-oxide fuel-cell power systems, Journal of Power Sources, Vol. 103, No. 2, pp.188-200, 2002.
[30] A. V. Akkaya, Electrochemical model for performance analysis of a tubular SOFC, International Journal of Energy Research, Vol. 31, No. 1, pp.79-98, 2007.
[31] S. H. Chan, K. A. Khor, Z. T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources, Vol. 93, No. 1, pp.130-140, 2001.
[32] N. Perdikaris, K. D. Panopoulos, L. Fryda, E. Kakaras, Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC, Fuel, Vol. 88, No. 8, pp.1365-1375, 2009.
[33] C. Loha, H. Chattopadhyay, P. K. Chatterjee, Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk, Energy, Vol. 36, No. 7, pp.4063-4071, 2011.
[34] G. Tao, T. Armstrong, A. Virkar, Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI, Nineteenth Annual ACERC&ICES Conference, Utah, United States, February 17, 2005.