[1] H. Niasari, G. Liaghat, Numerical investigation of dynamic crack growth in steel pipes under internal detonation loading, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 214-224, 2017. (in Persian فارسی(
[2] M. B. Nazari, H. Rajaei, Extended finite element analysis of a stationary crack in hygrothermal isotropic media subjected to thermal shock, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 56-66, 2017. (in Persian فارسی (
[3] J. Akbardoost, S. M. H. Mohajerani, A. Torabi, Investigation of fracture trajectory in blunt V-notched specimens under mixed mode I-II loading, Modares Mechanical Engineering, Vol. 16, No. 3, pp. 161-172, 2016. (in (فارسی Persian
[4] A. Farrokhabadi, H. R. madadi, Evaluation of the matrix cracking and induced delamination formation in cross-ply composite laminates under tension loading, Modares Mechanical Engineering, Vol. 17, No. 10, pp. 375- 384, 2017. (in Persian فارسی(
[5] B. Bourdin, G. A. Francfort, J. J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, Vol. 48, No. 4, pp. 797-826, 2000.
[6] B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound, Vol. 9, No. 3, pp. 411– 430, 2007.
[7] B. Bourdin, G. A. Francfort, J. J. Marigo, The variational approach to fracture, Journal of Elasticity, Vol. 91, No. 1, pp. 5-148, 2008.
[8] R. de Borst, C. V. Verhoosel, Gradient damage vs phase-field approaches for fracture: Similarities and differences, Computer Methods in Applied Mechanics and Engineering, Vol. 312, No. 5, pp. 78-94, 2016.
[9] H. Badnava, M. Kadkhodaei, M. Mashayekhi, A non-local implicit gradientenhanced model for unstable behaviors of pseudoelastic shape memory alloys in tensile loading, International Journal of Solids and Structures, Vol. 51, No. 23–24, pp. 4015-4025, 2014.
[10] H. Badnava, M. Kadkhodaei, M. Mashayekhi, Modeling of unstable behaviors of shape memory alloys during localization and propagation of phase transformation using a gradient-enhanced model, Journal of Intelligent Material Systems and Structures, Vol. 15, No. 18, pp. 2531-2546, 2015.
[11] H. Badnava, M. Mashayekhi, M. Kadkhodaei, An anisotropic gradient damage model based on microplane theory, International Journal of Damage Mechanics, Vol. 25, No. 3, pp. 336-357, 2015.
[12] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rateindependent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 45–48, pp. 2765-2778, 2010.
[13] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering, Vol. 83, No. 10, pp. 1273-1311, 2010.
[14] M. Hofacker, C. Miehe, Continuum phase field modeling of dynamic fracture: Variational principles and staggered FE implementation, International Journal of Fracture, Vol. 178, No. 1, pp. 113-129, 2012.
[15] M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, C. M. Landis, A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, Vol. 217–220, pp. 77-95, 2012.
[16] M. A. Msekh, M. Silani, M. Jamshidian, P. Areias, X. Zhuang, G. Zi, P. He, T. Rabczuk, Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model, Composites Part B: Engineering, Vol. 93, pp. 97-114, 2016.
[17] H. Badnava, M. A. Msekh, E. Etemadi, T. Rabczuk, An h-adaptive thermomechanical phase field model for fracture, Finite Elements in Analysis and Design, Vol. 138, No. Supplement C, pp. 31-47, 2018.
[18] C. Miehe, F. Welschinger, M. Hofacker, A phase field model of electromechanical fracture, Journal of the Mechanics and Physics of Solids, Vol. 58, No. 10, pp. 1716-1740, 2010.
[19] C. Miehe, F. Aldakheel, A. Raina, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, International Journal of Plasticity, Vol. 84, pp. 1-32, 2016.
[20] M. Ambati, T. Gerasimov, L. De Lorenzis, Phase-field modeling of ductile fracture, Computational Mechanics, Vol. 55, No. 5, pp. 1017-1040, 2015.
[21] M. Ambati, R. Kruse, L. De Lorenzis, A phase-field model for ductile fracture at finite strains and its experimental verification, Computational Mechanics, Vol. 57, No. 1, pp. 149-167, 2016.
[22] H. Badnava, E. Etemadi, M. Msekh, A phase field model for rate-dependent ductile fracture, Metals, Vol. 7, No. 5, pp. 180, 2017.
[23] T. Heister, M. F. Wheeler, T. Wick, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Computer Methods in Applied Mechanics and Engineering, Vol. 290, pp. 466-495, 2015.
[24] T. Linse, P. Hennig, M. Kästner, R. de Borst, A convergence study of phasefield models for brittle fracture, Engineering Fracture Mechanics, Vol. 184, No. 3, pp. 307-318, 2017.
[25] H. Li, M. W. Fu, J. Lu, H. Yang, Ductile fracture: Experiments and computations, International Journal of Plasticity, Vol. 27, No. 2, pp. 147- 180, 2011.
[26] X. Gao, G. Zhang, C. Roe, A study on the effect of the stress state on ductile fracture, International Journal of Damage Mechanics, Vol. 19, No. 1, pp. 75- 94, 2010.
[27] B. E. Amstutz, M. A. Sutton, D. S. Dawicke, J. C. Newman, An experimental study of CTOD for mode I/mode II stable crack growth in thin 2024-T3 aluminium specimens, Fracture Mechanics, Vol. 26, No, 1, pp. 256–71, 1996.
[28] M. Arcan, Z. Hashin, A. Voloshin, A method to produce uniform planestress states with applications to fiber-reinforced materials, Experimental Mechanics, Vol. 18, No. 4, pp. 141-146, 1978.