مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل تطبیقی غیرخطی ربات راه‌رونده دوپای 6 درجه آزادی

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد نجف آباد، دانشگاه آزاد اسلامی،نجف آباد، ایران
2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی نجف آباد، نجف آباد، ایران.
چکیده
در این مقاله کنترل تطبیقی غیرخطی ربات راه رونده دوپای 6 درجه آزادی با 7 رابط مورد بررسی قرار می‌گیرد. ربات مورد مطالعه به سه قسمت پای ثابت، پای متحرک و پاندول بالاتنه تقسیم شده و کلیه مفصل‌ها دورانی در نظر گرفته می‌شوند. عموما جهت محاسبات، ربات‌ها بصورت کامل در نظر گرفته می‌شوند که محاسبات آنها پیچیدگی زیادی دارند. همچنین در محاسبات تعادل، نقطه گشتاور صفر یا در کف پای تکیه‌گاه ثابت در نظر گرفته می‌شود یا در محدوده کف پا، متحرک است. در ربات مورد مطالعه، با توجه به تقدم حرکت اعضاء، ابتدا محاسبات بر روی پای متحرک انجام می‌شود و سپس تاثیر آن بر روی پای ثابت بررسی شده و جهت تعادل ربات از پاندول بالاتنه استفاده می‌شود. در بررسی تعادل، نقطه گشتاور صفر در شبیه‌سازی در نرم‌افزار متلب به صورت ثابت در نظر گرفته شده درحالیکه در شبیه‌سازی به کمک نرم‌افزار آدامز، نقطه گشتاور صفر در طول کف پای تکیه‌گاه حرکت می‌کند. کلیه نمودارها در نرم‌افزارهای آدامز و متلب بر یکدیگر منطبق شدند. در تحقیق حاضر، سینماتیک معکوس بروش مثلثاتی و دینامیک معکوس به روش الگوریتم تکراری نیوتن اویلر محاسبه گردیده است. کلیه محاسبات در نرم‌افزارهای متلب و آدامز شبیه‌سازی و صحه‌گذاری شده و با نوشتن روابط تعادل، زاویه‌ پاندول بالاتنه در هر لحظه بدست می‌آید. بدلیل امکان وجود عوامل ناشناخته طی فرایند ساخت ربات و عدم قطعیت در پارامترهایی نظیر طول، جرم و غیره، کنترل تطبیقی گشتاور محاسبه شده بر روی اجزای ربات اجرا شده و حداکثر گشتاور مورد نیاز برای کنترل کلیه مفصل‌ها بدست می‌آید.
کلیدواژه‌ها

عنوان مقاله English

Nonlinear adaptive control of a 6 DOF biped Robot

نویسندگان English

Ehsan Khajevandi rad 1
meisam vahabi 2
1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده English

This paper discussed nonlinear adaptive control of a 6 DOF biped robot. The studied robot was divided to three part, fix leg, moving leg and a torso and all the joints were considered rotational. Generally, for calculations, robots are considered as a whole which makes the related calculations complex. For balance calculations, the zero moment point (ZMP) was either considered as a fix point on the ground or a moving point on the foot plate. In the presented robot in this study with priority of movements, first, the calculations were carried out on the moving foot, then the effect of the motion on the foot was inspected and a pendulum was used to balance the robot. To check the balance, ZMP in the simulation in MATLAB software was considered as a fix point While in Adams software simulation, ZMP was considered moving along the bottom of the sole. All the charts active with both software met each other. In the presented study the inverse kinematics was calculated by trigonometric method and inverse dynamics of each leg was investigated by Newton-Euler iterative method. All calculations were carried out in MATLAB software and were verified by ADAMS software. By writing the equilibrium equations, the angle of torso at each time was achieved. In the next step, because of uncertainties in manufacturing and some parameters like mass, length, etc. adaptive computed torque control was used on each leg to achieve the maximum torque that each joint needs for stable walking.

کلیدواژه‌ها English

Biped robot
kinematics
Dynamics
adaptive computed torque control
[1] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie, Planning walking patterns for a biped robot, IEEE Transaction on robotic and Automation, Vol. 17, No.3, pp. 280- 289, June 2001.
[2] C. L. Shih, Ascending and descending stairs for a biped robot, IEEE Transaction on Systems, Man and Cybernetics- part A: Systems and Humans, Vol. 29, No. 3, pp. 255- 268, May 1999.
[3] J. I. Yamaguchi, A. Takanishi, I. Kato, Development of a biped walking robot compensating for three-axes moment by trunk notion, Proceeding of the 1993 IEEE/RSJ international Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 561- 566, July 26-30, 1993.
[4] F. M. Silva, J. A. T. Machado, Energy analysis during biped walking, Proceeding of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, pp. 59- 64, May 1999.
[5] J. P. Ferreira, M. M. Crisostomo, A. P. Coimbra, SVR Versus neural-fuzzy network controllers for the sagittal balance of a biped robot, IEEE Transacton on Neural Networks, Vol. 20, No. 12, pp. 1885- 1897, December 2009.
[6] C. Ott, M. A. Roa, G. Hirzinger, Posture and balance control for biped robots based on contact force optimization, 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, pp. 26-33, October 26-28, 2011.
[7] F. Plestan, J. W. Grizzle, E. R. Westervelt, G. Abba, Stable walking of a 7- DOF biped robot, IEEE Trancactions on Robotics and Automation, Vol. 19, No. 4, pp. 653-668, August 2003.
[8] P. Sardain, G. Bessonnet, Forces Acting on a biped robot. Center of pressure_ zero moment point, IEEE Transations on Systems, Man, and Cybernetics- part A: systems and Humans, Vol. 34, No. 5, pp. 630-637, September 2004.
[9] P. R. Vundavilli, D. K. Pratihar, Soft computing-based gait planners for a dynamically balanced biped robot negotiating sloping surfaces, Elsevier, Sience Direct, Applied Soft Computing , Vol. 9, Issue. 1, pp. 191-208, January 2009.
[10] A. Aloulou, O. Boubaker, A relevant reduction method for dynamic modeling of a seven-linked humanoid robot in the three-dimensional space, International Symposium on Robotics and Intelligent Sensors 2012, Procedia Engineering, Vol. 41, pp. 1277-1284, 2012.
[11] L. C. Macias, O. C. Espinosa, A. Loukianov and E.B. Corrochano, Inverse kinematics for a 6-DOF walking humanoid robot leg, Springer International Publishing, Advances in Applied Clifford Algebras, Vol. 27, Issue. 1, pp. 581- 597, March 2017.
[12] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dal, F. Permenter, T. Koolen, P. Marlon, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot, Springer Science- Autonomous Robots, Vol. 40, Issue 3, pp. 429– 455, March 2016.
[13] P. R. Vundavilli, D. K. Pratihar, Dynamically balanced optimal gaits of a ditch-crossing biped robot, Elsevier, Sience Direct, Robotics and Autonomous Systems 58, Vol. 58, Issue 4, pp. 349- 361, April 2010.
[14] K. Erbatur, O. Kurt, Natural ZMP trajectories for biped robote reference generation, IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, pp. 835- 845, March 2009.
[15] J. H. Kim, J. H. Oh, Walking control of the humanoid platform KHR-1 based on torque feedback control, Proceedings of the 2004 IEEE, International Conference on Robotics & Automation, New Orleans, pp. 623- 628, April 2004.
[16] Q. Zhang, D. Chen, H. Li, A gait planning method for biped heel- and- toe robot, 2012 International Conference On Future Energy. Environment and Materials, Elsevier, Sience Direct, Energy Procedia, Vol. 16, Part C, pp. 1799- 1805, 2012.
[17] D. J. Braun, J. E. Mitchell, M. Goldfarb, Actuated dynamic walking in a seven-link biped robot, IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 1, pp. 147- 156, February 2012.
[18] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd edition, pp. 125- 397, (Translated by A. Meghdari, F. Mirfakhraei, M.R. Akrami, E. Shojaei Barjoei), Sharif University of Technology press, 2005, (in Persian .(فارسی
[19] J. Slotine, W. Li, Applied Nonlinear Control, pp. 408- 417, Englewood Cliffs, New Jersey: Prentice Hall