[1] L. P.Kadanoff, G. R. McNamara, G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory, Physical Review A, Vol. 40, No. 8, pp. 4527, 1989.
[2] J. Hardy, Y. Pomeau, O. D. Pazzis, Time evolution of a two‐dimensional model system. I. Invariant states and time correlation functions, Journal of Mathematical Physics, Vol. 14, No. 12, pp. 1746-1759, 1973.
[3] F. Uriel, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J. P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Systems, Vol. 1, No. 4, pp. 649-707, 1987.
[4] F. J. Alexander, H. Chen, Sh. Chen, G. D. Doolen, Lattice Boltzmann model for compressible fluids, Physical Review A, Vol. 46, No. 4, pp. 1967, 1992.
[5] X. Kun, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method, Journal of Computational Physics, Vol. 171, No. 1, pp. 289-335, 2001.
[6] L. Qing, Y. L. He, Y. Wang, W. Q. Tao, Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations, Physical Review E, Vol. 76, No. 5, pp. 056705, 2007.
[7] S. Chenghai, Lattice-Boltzmann models for high speed flows, Physical Review E, Vol. 58, No. 6, pp. 7283, 1998.
[8] S. Chenghai, A. T. Hsu, Three-dimensional lattice Boltzmann model for compressible flows, Physical Review E, Vol. 68, No. 1, pp. 016303, 2003.
[9] H. Ya-Ling, Q. Liu, Q. Li, Three-dimensional finite-difference lattice Boltzmann model and its application to inviscid compressible flows with shock waves, Physica A: Statistical Mechanics and its Applications, Vol. 392, No. 20, pp. 4884-4896, 2013.
[10] G. Yan, Ch. Yaosong, H. Shouxin. Simple lattice Boltzmann model for simulating flows with shock wave, Physical Review E, Vol. 59, No. 1, pp. 454, 1999.
[11] Sh. Weiping, W. Shyy, R. Mei, Finite-difference-based lattice Boltzmann method for inviscid compressible flows, Numerical Heat Transfer: Part B: Fundamentals, Vol. 40, No. 1, pp. 1-21, 2001.
[12] Q, Kun, Ch. Shu, Y. T. Chew, Lattice Boltzmann and finite volume simulation of inviscid compressible flows with curved boundary, Advances in Applied Mathematics and Mechanics, Vol. 2, No. 05, pp. 573-586, 2010.
[13] Q. Kun, C. Shu, Y. T. Chew, Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Physical Review E, Vol. 75, No. 3, pp. 036706, 2007.
[14] J. Blazek, Computational Fluid Dynamics: Principles and Applications: Principles and Applications, pp. 94, Kidlington, Oxford, Elsevier, 2001.
[15] Z. Guo, C. Zheng. An extrapolation method for boundary conditions in lattice Boltzmann method, Physics of Fluids, Vol. 14, No. 6, pp. 1-4, 2002.
[16] M. Bristeau, Ed. Odile, Numerical simulation of compressible Navier-Stokes flows: A GAMM workshop, Springer Science & Business Media, Vol. 18, pp. 21, 2013.