[1] M. S. Whittingham, R. F. Savinell, T. Zawodzinski, T. Zawodzinski, Batteries and fuel cells, Chemical Reviews, Vol. 104, No. 10, pp. 4243-4244, 2004.
[2] W. H. Zhu, Y. Zhu, B. J. Tatarchuk, A simplified equivalent circuit model for simulation of Pb–acid batteries at load for energy storage application, Energy Conversion and Management, Vol. 52, No. 8, pp. 2794-2799, 2011.
[3] D. A. J. Rand, P. T. Moseley, J. Garche, C. D. Parker, Valve-Regulated Lead-Acid Batteries, First Edittion, pp. 158-179, Netherlans: Elsevier Science, 2004.
[4] G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, New York: Wiley, pp. 478-569, 1987.
[5] G. Venter, R. T. Haftka, J. H. Starness, Construction of response surfaces for design optimization applications, AIAA paper 96-4040-CP, Proceeings of 6th AIAA/NASA/ISSMO Symposium on Multidiciplinary Analysis and Optimization, Bellevue WA, Part 2, pp. 548-564, 1996.
[6] J. Newmann, W. Tiedemann, Porous-electrode theory with battery applications, ALChE Journal, Vol. 12, No. 1, pp. 25-41, 1975.
[7] W. G. Sunu, Electrochemical Cell Design, New York: Plenum Press, pp. 357, 1984.
[8] H. Gu, T. V. Nguyen, R. E. White, A Mathematical model of a lead-acid cell: discharge, rest and charge, Journal of the Electrochemical Society, Vol. 134, No. 2, pp. 2953-2960, 1987.
[9] W. B. Gu, C. Y. Wang, B. Y. Liaw, Numerical modeling of coupled electrochemical and transport processes in lead-acid batteries, Journal of the Electrochemical Society, Vol. 144, No. 6, pp. 2053-2061, 1997.
[10] V. Esfahanian, F. Torabi, Numerical simulation of lead-acid batteries using Keller-Box method, Journal of Power Sources, Vol. 158, No. 2, pp. 949-952, 2006.
[11] V. Esfahanian, F. Torabi, A. Mosahebi, Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter, Journal of Power Sources, Vol. 176, No. 1, pp. 373-380, 2008.
[12] T. Mesbahi, F. Khenfri, N. Rizoug, K. Chaaban, P. Bartholomeus, P. Moigne, Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm-Nelder-Mead optimization algorithm , Electric Power Systems Research, Vol. 131, No. 1, pp. 195-204, 2016.
[13] A. Pajares, X. Blasco, J. M. Herrero, R. Simarro, Non-linear robust ientification of a lead-acid battery moel using multiobjective evolutionary algorithms, IFAC Conference Paper Archive, Vol. 50, No. 1, pp. 4466-4471, 2017.
[14] G. Kujundzic, S. Iles, J. Matusko, M. Vasak, Optimal charging of valve-regulated lead-acid batteries based on model predictive control, Applied Energy, Vol. 187, No.1, pp. 189-202, 2017.
[15] A. Alagheband, M. Azimi, H. Hashemi, M. Kalani, D. Nakhaie, Optimization of grid configuration by investigating its effect on positive plate of lead-acid batteries via numerical modeling, Journal of Energy Storage, Vol. 12, No. 1, pp. 202-214, 2017.
[16] H. Pourmirzaagha, V. Esfahanian, F. Sabetghadam, F. Torabi, Optimization of electrochemical lead-acid battery using computational fluid dynamics, Modares Mechanical Engineering, Vol. 15, No. 9, pp. 280-288, 2015. (In Persian فارسی )
[17] T. Nazghelichi, F. Torabi, V. Esfahanian, Non-dimensional analysis of electrochemical governing equations of lead-acid batteries, arXiv:arXiv1708.00470, 2017.
[18] D. C. Montgomery, Design and Analysis of Experiments, Fifth Edittion, pp. 120-450, New York: John Wiley & sons Inc, 2001.
[19] R. H. Myers, D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Design of Experiments, pp. 176-198, New York : John Wiley & sons, 1995.