مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی خواص شکل‌پذیری کامپوزیت سه لایه برنج - فولاد IF- برنج

نویسندگان
دانشگاه صنعتی اصفهان، اصفهان، ایران
چکیده
در این پژوهش، کامپوزیت سه لایه برنج- فولاد IF- برنج به روش فرایند نورد سرد پیوندی ساخته شد و خواص شکل‌پذیری آن مورد بررسی قرار گرفت. بدلیل کارسختی بالای کامپوزیت حین فرایند نورد ، نمونه‌ها در دماهای آنیل 500 تا ℃700 و زمان ثابت 10 دقیقه تحت عملیات حرارتی قرار گرفتند. خواص شکل‌پذیری کامپوزیت به وسیله آزمون‌های کشش، ناهمسانگردی و اریکسن ارزیابی شد. نتایج نشان داد عملیات حرارتی بعد از نورد باعث رخ دادن پدیده تبلور مجدد در کامپوزیت و در نتیجه کاهش استحکام کششی و افزایش توان کرنش سختی می‌شود. ارتفاع گنبد ایجاد شده در آزمون اریکسن قبل از عملیات حرارتی، 10/53mm می‌باشد. با آنیل کردن کامپوزیت در دمای ℃500، ارتفاع گنبد به 14/62mm می‌رسد. با بیشتر شدن دمای آنیل تا دمای ℃600 به دلیل انرژی نقص در چیدن نسبتا بالای فولاد IF، تبلور مجدد تنها در لایه برنج رخ می‌دهد. اما با افزایش دمای آنیل به ℃650 و محیا شدن نیروی محرکه، تبلور مجدد در همه لایه‌ها اتفاق افتاده و شیب تغییرات خواص شکل‌پذیری بیشتر می‌شود. به طوری که در دمای ℃700 پدیده تبلور مجدد در کامپوزیت کامل شده و ارتفاع گنبد به بیشترین میزان خود یعنی17/29mm می‌رسد. همچنین با بیشتر شدن دمای آنیل، ناهمسانگردی قائم و صفحه‌ای به ترتیب افزایش و کاهش می‌یابد. با مقایسه خواص ناهمسانگردی کامپوزیت با ورق‌های برنج و فولاد IF در حالت تبلور مجددکامل، مشاهده شدکه تولیدکامپوزیت برنج- فولاد IF- برنج باعث بهبود ناهمسانگردی قائم در برنج و کاهش اثر منفی ناهمسانگردی صفحه ای در فولاد IF می‌گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of formability of three-layered brass-IF steel-brass composite

نویسندگان English

Alireza Bagheri
Mohammad Reza Toroghinejad
Aboozar Taherizadeh
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده English

In this research, three-layered composite of brass-IF steel-brass was fabricated by cold roll bonding process (CRB) and formability of composite were investigated. Due to high work hardening of composite during rolling process, specimens were heat treated at annealing temperatures at 500°Ϲ through 700 °Ϲ for 10 min. Formability properties of composite were investigated by using tensile, anisotropy and Erichsen tests. The results showed that, heat treatment after rolling resulted in occurrence of recrystallization phenomenon in composite, consequently a reduction tensile strength and rising strain hardening rate. Dome height created by Erichsen test prior to heat treatment was 10/53 mm, by annealing composite at 500℃, Dome height reached at 14.62 mm. By increasing annealing temperature to 600℃ and owing to relatively high stacking fault energies of IF steel, recrystallization solitary occurred in brass layer. Nevertheless, as a result of upward trend of annealing temperature up to 650℃ as well as resultant driving force, recrystallization occurred in all layers and gradient of formability properties increased. As at 700℃, recrystallization phenomenon was completed in the composite and dome height was peaked at 17/29 mm. Moreover, by increasing annealing temperature, normal anisotropy and planer anisotropy respectively increased and decreased. Anisotropy properties of composite in comparison with brass and IF steel during complete recrystallization, it was clear that production of brass-IF steel-brass composite caused to improve normal anisotropy in brass and reduce negative effects of planer anisotropy in IF steel.

کلیدواژه‌ها English

Layered composite
Formability properties
Recrystallization
Erichsen test
Anisotropy
[1] M. Naseri, M. Reihanian, E. Borhani, Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite, Journal of Manufacturing Processes, Vol. 24, No. 1, pp. 125-137, 2016 .
[2] C. Li, C. Chi, P. Lin, H. Zhang, W. Liang, Deformation behavior and interface microstructure evolution of Al/Mg/Al multilayer composite sheets during deep drawing, Materials and Design, Vol. 77, No. 1, pp. 15-24, 2015 .
[3] R. Jamaati, M. Toroghinejad, Cold roll bonding bond strengths: review, Materials Science and Technology, Vol. 27, No. 7, pp. 1101-1108, 2011 .
[4] S. Nambu, M. Michiuchi, J. Inoue, T. Koseki, Effect of interfacial bonding strength on tensile ductility of multilayered steel composites, Composites Science and Technology, Vol. 69, No. 11, pp. 1936-1941, 2009 .
[5] M. Masoumi, E. Emadoddin, Interface characterization and formability of two and three-layer composite sheets manufactured by roll bonding, Materials and Design, Vol. 44, No. 1, pp. 392-396, 2013 .
[6] H. D. Manesh, H. S. Shahabi, Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips, Journal of Alloys and Compounds, Vol. 476, No. 1, pp. 292-299, 2009 .
[7] H. Akramifard, H. Mirzadeh, M. Parsa, Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties, Materials Science and Engineering: A, Vol. 613, No. 1, pp. 232-239, 2014 .
[8] H. Arabi, S. Seyedein, A. Mehryab, B. Tolaminejad, Mathematical modeling and simulation of the interface region of a tri-layer composite material, brass-steel-brass, produced by cold rolling, International Journal of Minerals, Metallurgy and Materials, Vol. 16, No. 2, pp. 189-196, 2009 .
[9] Y. Sun, N. Xu, H. Fujii, The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys, Materials Science and Engineering: A, Vol. 589, No. 1, pp. 228-234, 2014 .
[10] P. Wakefield, M. Hatherly, Microstructure and texture of cold-rolled Cu-10Zn brass, Metal Science, Vol. 15, No. 3, pp. 109-115, 1981 .
[11] I. Tamura, H. Sekine, T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels, pp. 56-60, 2013.
[12] R. Jamaati, M. R. Toroghinejad, H. Edris, Effect of SiC nanoparticles on bond strength of cold roll bonded IF steel, Journal of Materials Engineering and Performance, Vol. 22, No. 11, pp. 3348-3356, 2013.
[13] S. J. Jahromi, A. Nazarboland, E. Mansouri, S. Abbasi, Investigation of formability of low carbon steel sheets by forming limit diagrams, Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 30, No. 3, pp. 377-385, 2006.
[14] A. A. Salem, S. R. Kalidindi, R. D. Doherty, Strain hardening of titanium: role of deformation twinning, Acta Materialia, Vol. 51, No. 14, pp. 4225-4237, 2003.
[15] M. Safaeirad, M. Toroghinejad, F. Ashrafizadeh, Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets, Journal of Materials Processing Technology, Vol. 196, No. 1, pp. 205-212, 2008 .
[16] J. Y. Jin, S. I. Hong, Effect of heat treatment on tensile deformation characteristics and properties of Al3003/STS439 clad composite, Materials Science and Engineering: A, Vol. 596, No. 1, pp. 1-8, 2014 .
[17] W. Bo, X. H. Chen, F.S. Pan, J. J. Mao, F. Yong, Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy, Transactions of Nonferrous Metals Society of China, Vol. 25, No. 8, pp. 2481-2489, 2015 .
[18] R. Jamaati, M. R. Toroghinejad, H. Edris, Comparison of microparticles and nanoparticles effects on the bonding of roll bonded IF steel, Transactions of the Indian Institute of Metals, Vol. 67, No. 5, pp. 659-665, 2014 .
[19] W. Liu, C.S. Man, D. Raabe, Effect of strain hardening on texture development in cold rolled Al–Mg alloy, Materials Science and Engineering: A, Vol. 527, No. 4, pp. 1249-1254, 2010 .
[20] K. Hajizadeh, M. Tajally, E. Emadoddin, E. Borhani, Study of texture, anisotropy and formability of cartridge brass sheets, Journal of Alloys and Compounds, Vol. 588, No. 1, pp. 690-696, 2014 .
[21] R. Shabadi, S. Suwas, S. Kumar, H. Roven, E. Dwarkadasa, Texture and formability studies on AA7020 Al alloy sheets, Materials Science and Engineering: A, Vol. 558, No. 1, pp. 439-445, 2012 .
[22] C. Xie, E. Nakamachi, The effect of crystallographic textures on the formability of high-strength steel sheets, Journal of Materials Processing Technology, Vol. 122, No. 1, pp. 104-111, 2002 .
[23] H. Zhang, G. Huang, D. Kong, G. Sang, B. Song, Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures, Journal of Materials Processing Technology, Vol. 211, No. 10, pp. 1575-1580, 2011 .
[24] Y. Chino, K. Sassa, M. Mabuchi, Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y, Materials Science and Engineering: A, Vol. 513, No. 1, pp. 394-400, 2009 .
[25] K. A. Al-Ghamdi, G. Hussain, On the comparison of formability of roll-bonded steel-Cu composite sheet metal in incremental forming and stamping processes, The International Journal of Advanced Manufacturing Technology, Vol. 87, No. 1-4, pp. 267-278, 2016 .
[26] E. Nakamachi, C. Xie, M. Harimoto, Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses, International Journal of Mechanical Sciences, Vol. 43, No. 3, pp. 631-652, 2001.