مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه‌ی مشخصه‌های ویسکوالاستیک و منحنی هیسترزیس کامپوزیت زمینه پلیمری تقویت‌شده با نانولوله‌ی کربنی

نویسندگان
دانشگاه گیلان، رشت، ایران
چکیده
در این تحقیق، یک مدل تحلیلی برای مطالعه‌ی رفتار دینامیکی و ویسکوالاستیک نانوکامپوزیت پلیمری استفاده شده است. مدل تحلیلی با استفاده از ادغام مدل میکرومکانیکی سلول واحد و مدل جامد خطی استاندارد به دست آمده است. اصل انطباق بولتزمن برای ایجاد روابط ساختاری استفاده شده است. ابتدا کرنش متناسب با فرایند آسایش به دست آمده است. سپس با استفاده از ایده‌ی خطی‌سازی اصل انطباق بولتزمن، پیشینه تنش به دست می‌آید. در پایان، تابع خزش مرتبط با مدول آسایش به دست می‌آید و حلقه هیسترزیس برای مواد نانوکامپوزیت ترسیم می‌شود. پاسخ خزش با زمان به صورت سینوسی تغییر می‌کند و تابعی از پیشینه تنش است. مدول‌های اتلاف و انباشتگی و رفتار ماده در فضای لاپلاس به ترتیب توسط مدل جامد خطی استاندارد و مدل میکرومکانیکی سلول واحد به دست آمده است. مدل جامد خطی استاندارد با موازی کردن مدل کلوین و مدل مکسول به دست می‌آید. مدل با نتایج آزمایشگاهی اعتبارسنجی شده است. تاثیرات ضخامت فاز میانی، درصد حجمی نانولوله‌ی کربنی و زاویه‌ی فازی بر حلقه هیسترزیس بررسی شده است. نتایج به دست آمده نشان می‌دهند که با افزایش درصد حجمی نانولوله‌ی کربنی و زاویه‌ی فازی سطح حلقه هیسترزیس به ترتیب کاهش و افزایش می‌یابند. هم‌چنین ضخامت فاز میانی تاثیرات قابل توجهی بر رفتار دینامیکی نانوکامپوزیت دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of viscoelastic characteristics and hysteresis loop of carbon nanotube polymer matrix composites

نویسندگان English

mojtaba haghgoo
Reza Ansari
Abolfazl Darvizeh
mohammad kazem Hassanzadeh-Aghdam
university of guilan
چکیده English

In this research, an analytical method is presented for predicting the viscoelastic and dynamic behavior of polymer nanocomposite. The analytical model is achieved by coupling the SUC micromechanical model with standard linear solid model. Boltzmann superposition principle is used to develop the constitutive equations. First, the strain associated with a relaxation experiment is considered, and then by using the idea of linearity as embodied in the Boltzmann superposition principle, the resulting stress history is predicted. Eventually, the creep function corresponding to the relaxation modulus is obtained and the hysteresis loop for nanocomposite material is represented. Creep response is sinusoidal in time and a function of stress history. Loss and storage modulus and material behavior in Laplace domain are obtained using standard linear solid model and SUC micromechanical model, respectively. Standard linear solid model is achieved by paralleling the Kelvin model with Maxwell model. The model is validated with experimental results. Effects of different interphase thickness, CNT volume fraction and phase angle on hysteresis loop is studied. Obtained results reveal that increasing the CNT volume fraction and phase angle leads to decreasing and increasing the nanocomposite hysteresis loop area, respectively. Also, Interphase thickness contains considerable effects on the nanocomposite dynamic behavior.

کلیدواژه‌ها English

Micromechanics
Unit cell
Viscoelastic
Hysteresis
Standard linear solid
[1] A. Darvizeh, R. Ansari, M. J. Mahmoudi, M. K. Hassanzadeh, Investigation of interphase effect on the non-linear viscoelastic behavior of multiphase polymer composites, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 181-191, 2016. (in Persian فارسی )
[2] B.J. Yang, B. R. Kim, H. K. Lee, Predictions of viscoelastic strain rate dependent behavior of fiber-reinforced polymeric composites, Composite Structures, Vol. 94, No. 4, pp. 1420-1429, 2012.
[3] Y. Jia, K. Peng, X. L. Gong, Z. Zhang, Creep and recovery of polypropylene/carbon nanotube composites, Plasticity, Vol. 27, No. 8, pp. 1239-1251, 2011.
[4] O. Starkova, S. T. Buschhorn, E. Mannov, K. Schulte, et al., Creep and recovery of epoxy/MWCNT nanocomposites, Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 8, pp. 1212-1218, 2012.
[5] S. Kashi, R. K. Gupta, N. Kao, S. N. Bhattacharya, Viscoelastic properties and physical gelation of poly (butylene adipate-co-terephthalate)/graphene nanoplatelet nanocomposites at elevated temperatures, Polymer, Vol. 101, No. 1, pp. 347-357, 2016.
[6] J. Kong, Z. Ye, W. Chen, X. Shao, et al., Dynamic mechanical behavior of a Zr-based bulk metallic glass composite, Materials & Design, Vol. 88, No. 1, pp. 69-74, 2015.
[7] K. Li, X. L. Gao, A. Roy, Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites, Mechanics of Advanced Materials and Structures, Vo. 13, No. 4, pp. 317-328, 2006.
[8] Y. Pan, G. J. Weng, S. A. Meguid, W. S. Bao, et al., Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites, Mechanics of Materials, Vol. 58, No. 1, pp. 1-11, 2013.
[9] R. Hashemi, On the overall viscoelastic behavior of graphene/polymer nanocomposites with imperfect interface, Engineering Science, Vol. 105, No. 1, pp. 38-55, 2016.
[10] R. Ansari, M. Hassanzadeh-Aghdam, Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites, Mechanical Sciences, Vol. 115, No. 1, pp. 45-55, 2016.
[11] J. Li, G. Weng, Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites, Composites Part B: Engineering, Vol. 27, No. 6, pp. 589-598, 1996.
[12] R. Ansari, M. H. Aghdam, Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading, Composites Part B: Engineering, Vol. 90, No. 1, pp. 512-522, 2016.
[13] F. Fisher, L. Brinson, Viscoelastic interphases in polymer–matrix composites: Theoretical models and finite-element analysis, Composites Science and Technology, Vol. 61, No. 5, pp. 731-748, 2001.
[14] H. Zhang, Y. Liu, H. Sun, S. Wu, Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading, Construction and Building Materials, Vol. 111, No. 1, pp. 30-42, 2016.
[15] Y. Xu, T. Liu, Q. Wan, X. Gong, et al., The energy dissipation behaviors of magneto-sensitive polymer gel under cyclic shear loading, Materials Letters, Vol. 158, No. 1, pp. 406-408, 2015.
[16] X. Zhou, D. Y. Yu, X. Y. Shao, S. Q. Zhang, et al., Asymptotic analysis on flexural dynamic characteristics for a laminated composite plate with embedded and perforated periodically viscoelastic damping material core, Composite Structures, Vol. 154, No. 1, pp. 616-633, 2016.
[17] L. Longbiao, Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites, Composites Part B: Engineering, Vol. 53, No. 1, pp. 36-45, 2013.
[18] L. Longbiao, Modeling for cyclic loading/unloading hysteresis loops of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Part I: Theoretical analysis, Engineering Fracture Mechanics, Vol. 164, No. 1, pp. 117-136, 2016.
[19] S. E. Koranian, S. Esmaeelzadeh Khadem, M. Kokabi, Nonlinear free vibration analysis of the polymeric nanocomposite viscoelastic plates containing carbon nanotubes, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 429-438, 2016. (in Persian فارسی )
[20] V. Zal, N. H. Moslemi, A. R. Bahramian, H. Abdollahi, et al., Investigation of the effect of processing temperature on the elastic and viscoelastic properties of PVC/fiberglass composite laminates, Modares Mechanical Engineering, Vol. 15, No. 11, pp. 9-16, 2015. (in Persian فارسی )
[21] U. A. Joshi, S. C. Sharma, S. Harsha, Effect of carbon nanotube orientation on the mechanical properties of nanocomposites, Composites Part B: Engineering, Vol. 43, No. 4, pp. 2063-2071, 2012.
[22] M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi, R. Ansari, Interphase effects on the thermo-mechanical properties of three-phase composites, Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, Vol. 230, No. 19, pp. 3361-3371, 2016.
[23] R. Ansari, M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi, Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites, Acta Mechanica, Vol. 227, No. 12, pp. 3475-3495, 2016.
[24] M. Megnis, J. Varna, Micromechanics based modeling of nonlinear viscoplastic response of unidirectional composite, Composites Science and Technology, Vol. 63, No. 1, pp. 19-31, 2003.
[25] Y. Gao, F. Hu, Y. Wu, J. Liu, et al., Understanding the structural evolution under the oscillatory shear field to determine the viscoelastic behavior of nanorod filled polymer nanocomposites, Computational Materials Science, Vol. 142, No. 1, pp. 192-199, 2018.
[26] M. M. Shokrieh, R. Ghajar, A. R. Shajari, The effect of time-dependent slightly weakened interface on the viscoelastic properties of CNT/polymer nanocomposites, Composite Structures, Vol. 146, No. 1, pp. 122-131, 2016.
[27] R. Ansari, M. K. Hassanzadeh, Effects of regular and random distribution of silica nanoparticles on the thermo-elastic and viscoelastic properties of polymer nanocomposites- Micromechanics-based analysis, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 99-107, 2014. (in Persian فارسی )
[28] A. R. Shajari, R. Ghajar, M. M. Shokrieh, Multiscale modeling of the viscoelastic properties of CNT/polymer nanocomposites, using complex and time-dependent homogenizations, Computational Materials Science, Vol. 142, No. 1, pp. 395-409, 2018.
[29] B. Werner, I. Daniel, Characterization and modeling of polymeric matrix under multi-axial static and dynamic loading, Composites Science and Technology, Vol. 102, No.1, pp. 113-119, 2014.
[30] S. E. Zeltmann, K. A. Prakash, M. Doddamani, N. Gupta, Prediction of modulus at various strain rates from dynamic mechanical analysis data for polymer matrix composites, Composites Part B: Engineering, Vol. 120, No. 1, pp. 27-34, 2017.
[31] N. Reynolds, J. McGarry, Single cell active force generation under dynamic loading–Part II: Active modelling insights, Acta Biomaterialia, Vol. 27, No. 1, pp. 251-263, 2015.
[32] J. Liu, H. Qi, Hysteresis and precondition of the standard viscoelastic solid model, Nonlinear Analysis: Real World Applications, Vol. 11, No. 4, pp. 3066-3076, 2010.
[33] A. Meera, S. Said, Y. Grohens, S. Thomas, Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites, Physical Chemistry C, Vol. 113, No. 42, pp. 17997-18002, 2009.
[34] C. Wang, S. Chen, Viscoelastic properties of randomly entangled carbon nanotube networks under cyclic tension loading, Computational Materials Science, Vol. 119, No. 1, pp. 46-51, 2016.
[35] M. Vakilifard, M. Mahmoodi, Three dimensional micromechanical modeling of damping capacity of nano fiber reinforced polymer nanocomposites, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 257-266, 2016. (in Persian فارسی )
[36] J. Greenwood, K. Johnson, Oscillatory loading of a viscoelastic adhesive contact, Colloid and Interface Science, Vol. 296, No. 1, pp. 284-291, 2006.
[37] A. Steckmeyer, M. Sauzay, A. Weidner, E. Hieckmann, Micromechanical modelling of the cyclic stress–strain behaviour of nickel polycrystals, Fatigue, Vol. 40, No.1, pp. 154-167, 2012.
[38] A. Ras, N. Boumechra, Seismic energy dissipation study of linear fluid viscous dampers in steel structure design, Alexandria Engineering, Vol. 55, No. 3, pp. 2821-2832, 2016.
[39] M. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes, Composite Materials, Vol. 51, No. 20, pp. 2899-2912, 2017.
[40] J. L. Tsai, S. H. Tzeng, Y. T. Chiu, Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation, Composites Part B: Engineering, Vol. 41, No. 1, pp. 106-115, 2010.
[41] A. Krasnobrizha, P. Rozycki, L. Gornet, P. Cosson, Hysteresis behaviour modelling of woven composite using a collaborative elastoplastic damage model with fractional derivatives, Composite Structures, Vol. 158, No. 1, pp. 101-111, 2016.