[1] A. Darvizeh, R. Ansari, M. J. Mahmoudi, M. K. Hassanzadeh, Investigation of interphase effect on the non-linear viscoelastic behavior of multiphase polymer composites, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 181-191, 2016. (in Persian فارسی )
[2] B.J. Yang, B. R. Kim, H. K. Lee, Predictions of viscoelastic strain rate dependent behavior of fiber-reinforced polymeric composites, Composite Structures, Vol. 94, No. 4, pp. 1420-1429, 2012.
[3] Y. Jia, K. Peng, X. L. Gong, Z. Zhang, Creep and recovery of polypropylene/carbon nanotube composites, Plasticity, Vol. 27, No. 8, pp. 1239-1251, 2011.
[4] O. Starkova, S. T. Buschhorn, E. Mannov, K. Schulte, et al., Creep and recovery of epoxy/MWCNT nanocomposites, Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 8, pp. 1212-1218, 2012.
[5] S. Kashi, R. K. Gupta, N. Kao, S. N. Bhattacharya, Viscoelastic properties and physical gelation of poly (butylene adipate-co-terephthalate)/graphene nanoplatelet nanocomposites at elevated temperatures, Polymer, Vol. 101, No. 1, pp. 347-357, 2016.
[6] J. Kong, Z. Ye, W. Chen, X. Shao, et al., Dynamic mechanical behavior of a Zr-based bulk metallic glass composite, Materials & Design, Vol. 88, No. 1, pp. 69-74, 2015.
[7] K. Li, X. L. Gao, A. Roy, Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites, Mechanics of Advanced Materials and Structures, Vo. 13, No. 4, pp. 317-328, 2006.
[8] Y. Pan, G. J. Weng, S. A. Meguid, W. S. Bao, et al., Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites, Mechanics of Materials, Vol. 58, No. 1, pp. 1-11, 2013.
[9] R. Hashemi, On the overall viscoelastic behavior of graphene/polymer nanocomposites with imperfect interface, Engineering Science, Vol. 105, No. 1, pp. 38-55, 2016.
[10] R. Ansari, M. Hassanzadeh-Aghdam, Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites, Mechanical Sciences, Vol. 115, No. 1, pp. 45-55, 2016.
[11] J. Li, G. Weng, Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites, Composites Part B: Engineering, Vol. 27, No. 6, pp. 589-598, 1996.
[12] R. Ansari, M. H. Aghdam, Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading, Composites Part B: Engineering, Vol. 90, No. 1, pp. 512-522, 2016.
[13] F. Fisher, L. Brinson, Viscoelastic interphases in polymer–matrix composites: Theoretical models and finite-element analysis, Composites Science and Technology, Vol. 61, No. 5, pp. 731-748, 2001.
[14] H. Zhang, Y. Liu, H. Sun, S. Wu, Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading, Construction and Building Materials, Vol. 111, No. 1, pp. 30-42, 2016.
[15] Y. Xu, T. Liu, Q. Wan, X. Gong, et al., The energy dissipation behaviors of magneto-sensitive polymer gel under cyclic shear loading, Materials Letters, Vol. 158, No. 1, pp. 406-408, 2015.
[16] X. Zhou, D. Y. Yu, X. Y. Shao, S. Q. Zhang, et al., Asymptotic analysis on flexural dynamic characteristics for a laminated composite plate with embedded and perforated periodically viscoelastic damping material core, Composite Structures, Vol. 154, No. 1, pp. 616-633, 2016.
[17] L. Longbiao, Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites, Composites Part B: Engineering, Vol. 53, No. 1, pp. 36-45, 2013.
[18] L. Longbiao, Modeling for cyclic loading/unloading hysteresis loops of carbon fiber-reinforced ceramic-matrix composites at room and elevated temperatures. Part I: Theoretical analysis, Engineering Fracture Mechanics, Vol. 164, No. 1, pp. 117-136, 2016.
[19] S. E. Koranian, S. Esmaeelzadeh Khadem, M. Kokabi, Nonlinear free vibration analysis of the polymeric nanocomposite viscoelastic plates containing carbon nanotubes, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 429-438, 2016. (in Persian فارسی )
[20] V. Zal, N. H. Moslemi, A. R. Bahramian, H. Abdollahi, et al., Investigation of the effect of processing temperature on the elastic and viscoelastic properties of PVC/fiberglass composite laminates, Modares Mechanical Engineering, Vol. 15, No. 11, pp. 9-16, 2015. (in Persian فارسی )
[21] U. A. Joshi, S. C. Sharma, S. Harsha, Effect of carbon nanotube orientation on the mechanical properties of nanocomposites, Composites Part B: Engineering, Vol. 43, No. 4, pp. 2063-2071, 2012.
[22] M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi, R. Ansari, Interphase effects on the thermo-mechanical properties of three-phase composites, Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, Vol. 230, No. 19, pp. 3361-3371, 2016.
[23] R. Ansari, M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi, Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites, Acta Mechanica, Vol. 227, No. 12, pp. 3475-3495, 2016.
[24] M. Megnis, J. Varna, Micromechanics based modeling of nonlinear viscoplastic response of unidirectional composite, Composites Science and Technology, Vol. 63, No. 1, pp. 19-31, 2003.
[25] Y. Gao, F. Hu, Y. Wu, J. Liu, et al., Understanding the structural evolution under the oscillatory shear field to determine the viscoelastic behavior of nanorod filled polymer nanocomposites, Computational Materials Science, Vol. 142, No. 1, pp. 192-199, 2018.
[26] M. M. Shokrieh, R. Ghajar, A. R. Shajari, The effect of time-dependent slightly weakened interface on the viscoelastic properties of CNT/polymer nanocomposites, Composite Structures, Vol. 146, No. 1, pp. 122-131, 2016.
[27] R. Ansari, M. K. Hassanzadeh, Effects of regular and random distribution of silica nanoparticles on the thermo-elastic and viscoelastic properties of polymer nanocomposites- Micromechanics-based analysis, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 99-107, 2014. (in Persian فارسی )
[28] A. R. Shajari, R. Ghajar, M. M. Shokrieh, Multiscale modeling of the viscoelastic properties of CNT/polymer nanocomposites, using complex and time-dependent homogenizations, Computational Materials Science, Vol. 142, No. 1, pp. 395-409, 2018.
[29] B. Werner, I. Daniel, Characterization and modeling of polymeric matrix under multi-axial static and dynamic loading, Composites Science and Technology, Vol. 102, No.1, pp. 113-119, 2014.
[30] S. E. Zeltmann, K. A. Prakash, M. Doddamani, N. Gupta, Prediction of modulus at various strain rates from dynamic mechanical analysis data for polymer matrix composites, Composites Part B: Engineering, Vol. 120, No. 1, pp. 27-34, 2017.
[31] N. Reynolds, J. McGarry, Single cell active force generation under dynamic loading–Part II: Active modelling insights, Acta Biomaterialia, Vol. 27, No. 1, pp. 251-263, 2015.
[32] J. Liu, H. Qi, Hysteresis and precondition of the standard viscoelastic solid model, Nonlinear Analysis: Real World Applications, Vol. 11, No. 4, pp. 3066-3076, 2010.
[33] A. Meera, S. Said, Y. Grohens, S. Thomas, Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites, Physical Chemistry C, Vol. 113, No. 42, pp. 17997-18002, 2009.
[34] C. Wang, S. Chen, Viscoelastic properties of randomly entangled carbon nanotube networks under cyclic tension loading, Computational Materials Science, Vol. 119, No. 1, pp. 46-51, 2016.
[35] M. Vakilifard, M. Mahmoodi, Three dimensional micromechanical modeling of damping capacity of nano fiber reinforced polymer nanocomposites, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 257-266, 2016. (in Persian فارسی )
[36] J. Greenwood, K. Johnson, Oscillatory loading of a viscoelastic adhesive contact, Colloid and Interface Science, Vol. 296, No. 1, pp. 284-291, 2006.
[37] A. Steckmeyer, M. Sauzay, A. Weidner, E. Hieckmann, Micromechanical modelling of the cyclic stress–strain behaviour of nickel polycrystals, Fatigue, Vol. 40, No.1, pp. 154-167, 2012.
[38] A. Ras, N. Boumechra, Seismic energy dissipation study of linear fluid viscous dampers in steel structure design, Alexandria Engineering, Vol. 55, No. 3, pp. 2821-2832, 2016.
[39] M. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes, Composite Materials, Vol. 51, No. 20, pp. 2899-2912, 2017.
[40] J. L. Tsai, S. H. Tzeng, Y. T. Chiu, Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation, Composites Part B: Engineering, Vol. 41, No. 1, pp. 106-115, 2010.
[41] A. Krasnobrizha, P. Rozycki, L. Gornet, P. Cosson, Hysteresis behaviour modelling of woven composite using a collaborative elastoplastic damage model with fractional derivatives, Composite Structures, Vol. 158, No. 1, pp. 101-111, 2016.