مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارزیابی خرابی مود II کامپوزیت‌های لایه‌ای با استفاده از نوع جدیدی از موج نشر آوایی و روش المان محدود‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

نویسندگان
دانشگاه صنعتی امیرکبیر، تهران، ایران
چکیده
جدایش بین لایه‌ای یکی از مهم ترین عیوب در مواد کامپوزیتی لایه لایه می باشد که وجود این عیب در یک سازه باعث کاهش استحکام آن سازه می گردد. در این مقاله، روشی با قابلیت اطمینان بالا برای ارزیابی جدایش بین لایه ای در کامپوزیت های لایه ای با استفاده از روش نشر آوایی پیشنهاد شده است. ابتدا یک روش جدید برای تجزیه بنیادی حالت های موجی در نمونه های کوچک توسعه داده شد. مکانیزم های خرابی در مد II شکست برای نمونه های بافته و تک جهته با استفاده از روش دسته بندی فازی مورد تجزیه و تحلیل قرار گرفت. پس از آن، پدیده توقف ترک در هر نمونه مورد بررسی گردید. در ادامه، تست های تجربی و مدل سازی لایه چسبنده برای مشخص کردن جدایش بین لایه ای در نمونه های مود دو به کار گرفته شده است. نتایج نشان می دهد که امکان پذیر است اثر پراکندگی صوت نظیر اتلاف سیگنال های نشرآوایی با استفاده از روش پیشنهادی جدید را با موفقیت کاهش داد. به عنوان نکته نهایی، نتایج این مطالعه می تواند انواع خرابی را در کامپوزیت های لایه ای به طور موثر با استفاده از تکنیک موجی انتشار آوایی متمایز سازد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Damage assessment of mode II of polymer composite material using a new acoustic emission and finite element methods

نویسندگان English

mahdi habibi
jalal yousefi
Department of Mechanical Engineering, Amirkabir University, Tehran, Iran
چکیده English

Delamination is one of the major failure modes of the laminated composite material, which is responsible for the stiffness degradation of these materials. Hence, it is necessary to investigate this damage mechanism in these types of materials in order to distinguish their behaviors and their effects on the residual strength of the composite laminates. In this paper, a very capable procedure is proposed to assess delamination using Acoustic Emission (AE) method in composite laminates. Firstly, a novel procedure was established to decompose the fundamental Lamb wave modes in small size specimens. The damage mechanisms in End Notched Flexure (ENF) in woven and unidirectional specimens were then distinguished using Fuzzy Clustering Method (FCM). Subsequently, the crack-arrest phenomenon was inspected in each specimen. Next, experimental and Cohesive Zone Modeling (CZM) methods were done to characterize the delamination using ENF specimens. The results displayed how, it is possible to effectively reduce the effect of propagating media such as attenuation of AE signals using the new proposed procedure. In conclusion, the results of this research could lead to proficiently distinguishing different damages in laminated composite using AE Lamb-based technique.

کلیدواژه‌ها English

LambWave
Acoustic emission
Damage mechanisms
Composite laminates
Delamination
[1] J. Bohse, A. J. Brunner, Acoustic emission in delamination investigation. In: Sridharan S, Delamination Behaviour of Composites, pp. 217–277, CRC Press, New York, 2008.
[2] D. Aljets, A. Chong, S. Wilcox, K. Holford, Acoustic emission source location in plate-like structures using a closely arranged triangular sensor array, Acoustic Emission, Vol. 28, pp. 85-98, 2010.
[3] R. P. Dalton, P. Cawley, M. J. S Lowe: The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure, Nondestructive Evaluation, Vol. 20, No. 1, pp. 29-46, 2001.
[4] T. H. Loutas, V. Kostopoulos, Health monitoring of carbon/carbon, woven reinforced composites, Damage assessment by using advanced signal processing techniques. Part I: acoustic emission monitoring and damage mechanisms evolution, Composite Science Technology, Vol. 69, No. 2, pp. 265-272, 2009.
[5] R. Mohammadi, M. Ahmadi Najafabadi, M. Saeedifar, J. Yousefi, G. Minak, Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites, Composite Part B Engineering, Vol. 108, pp. 425-437, 2017.
[6] J. L. Rose, Ultrasonic guided waves in solid media, pp. 36-52, New York: Cambridge University Press, 2014.
[7] J. J. Scholey, P. D. Wilcox, M. R. Wisnom, M. I. Friswell, Quantitative experimental measurements of matrix cracking and delamination using acoustic emission, Composite Part A Application of Science, Vol. 41, No. 5, pp. 612-623, 2010.
[8] M. Giordano, A. Calabro, C. Esposito, A. D. Amore, L. Nicolais, An acoustic-emission characterization of the failure modes in polymer-composite materials, Composite Science Technology, Vol. 58, pp. 1923-1928, 1998.
[9] M. Nazmdar Shahri, J. Yousefi, M. Fotouhi, M. Ahmadi, Damage evaluation of composite materials using acoustic emission features and Hilbert transform, Composite Material, Vol. 50, No. 14, pp. 1897-1907, 2015.
[10] G. Minak, A. Zucchelli, Damage evaluation and residual strength prediction of CFRP laminates by means of acoustic emission techniques, Durand, L.P. (ed.) Composite Materials Research Progress, pp. 165–207, Nova Science Publishers Inc, New York, 2008.
[11] A. R. Oskouei, M. Ahmadi, Acoustic emission characteristics of mode I delamination in / polyester composites, Composite Material, Vol. 44, No. 7, pp. 793-807, 2010.
[12] J. Yousefi, M. Ahmadi, M. Nazmdar, A. Refahi, F. Moghadas, Damage categorization of glass/epoxy composite material under mode II delamination using acoustic emission data, a clustering approach to elucidate wavelet transformation analysis, Arab. J. Sci. Eng, Vol. 39, pp. 1325-1335, 2014.
[13] S. Wang, D. D. L Chung, Effects of composite lay-up configuration and thickness on the damage selfsensing behavior of carbon fiber polymer-matrix composite, Material Science, Vol. 40, pp. 561-568, 2005.
[14] M. Ali, S. C. Joshi, Damage evolution in glass/epoxy composites engineered using core–shell micro particles under impact loading, Material Science, Vol. 48, pp. 8354-8367, 2013.
[15] C. Ramirez-Jimenez, N. Papadakis, N. Reynolds, Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission events, Composite Science Technology, Vol. 64, pp. 1819-1827, 2004.
[16] P. Kumar, A. Garg, Failure modes and fractographic study of glass-epoxy composite under dynamic compression, Material Science, Vol. 23, No. 7, pp. 2305-2309, 1998.
[17] J. L. Rose, Guided wave nuances for ultrasonic nondestructive evaluation, IEEE Trans. Ultrasonic Ferroelectr. Freq. Control, Vol. 47, No. 3, pp. 575-583, 2000.
[18] G. Romhany, G. Szebényi, Interlaminar fatigue crack growth behavior ofMWCNT/carbon fiber reinforced hybrid composites monitored via newly developed acoustic emission method, Express Polym. Lett, Vol. 6, No.7, pp. 572-580, 2012.
[19] J. Yousefi, R. Mohamadi, M. Saeedifar, M. Ahmadi, H. Toudeshky, Delamination characterization in composite laminates using acoustic emission features, micro visualization and finite element modeling, Composite Material, Vol. 50, No. 22, pp. 3133-3145, 2016.
[20] M. Fotouhi, F. Pashmforoush, M. Ahmadi, A. Refahi Oskouei, Monitoring the initiation and growth of delamination in composite materials using acoustic emission under quasi-static three-point bending test, Reinforced Plastic Composite, Vol. 30, No. 17, pp. 1481-1493, 2011.
[21] A. Mahdian, J. Yousefi, M. Nazmdar, N. Zarif, M. Ahmadi, G. Minak, Damage evaluation of laminated composites under low-velocity impact tests using acoustic emission method, Composite Material, Vol. 51, No. 4, pp. 433-450, 2017.
[22] M. Fotouhi, M. Ahmadi, Investigation of the mixed-mode delamination in polymer-matrix composites using acoustic emission technique, Reinforced Plastic Composite, Vol. 33, No. 19, pp. 1767-1782, 2014.
[23] M. Nikbakht, J. Yousefi, H. Toudeshky, G. Minak, Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization, Composites Part B Eng., Vol. 113, pp. 185-196, 2017.
[24] T. Vandellos, C. Huchette, N. Carrère, Proposition of a framework for the development of a cohesive zone model adapted to carbon-fiber reinforced plastic laminated composites, Composite Structure, Vol. 105, pp. 199-206, 2013.
[25] A. Refahi Oskouei, A. Zucchelli, M. Ahmadi, G. Minak, An integrated approach based on acoustic emission and mechanical information to evaluate the delamination fracture toughness at mode I in composite laminate, Mater. Des, Vol. 32, No. 3, pp. 1444-1455, 2011.
[26] M. Saeedifar, M. A. Najafabadi, J. Yousefi, R. Mohammadi, H.H. Toudeshky, G. Minak, Delamination analysis in composite laminates by means of acoustic emission and bi-linear/tri-linear cohesive zone modeling, Composite Structure, Vol. 161, pp. 505-512, 2017.
[27] M. Saeedifar, M. Fotouhi, M. Najafabadi, H. H. Toudeshky, Prediction of delamination growth in laminated composites using acoustic emission and cohesive zone modeling techniques, Composite Structure, Vol. 124, pp. 120-127, 2015.
[28] L. Zhao, Y. Wang, J. Zhang, Y. Gong, N. Hu, N. Li, XFEM-based model for simulating zigzag delamination growth in laminated composites under mode I loading. Composite Structures, Vol. 160, pp. 1155-1162, 2017.
[29] H. Y. Choi, F. K. Chang, A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact, Composite Material, Vol. 26, No. 14, pp. 2134-2169, 1992.
[30] K. Asamene, L. Hudson, M. Sundaresan, Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels, Ultrasonics, Vol. 59, pp. 86-93, 2015.
[31] J. Jingpin, W. Bin, H. Cunfu, Acoustic emission source location methods using mode and frequency analysis, J. Structural Cont. Health Monitoring, Vol. 15, pp. 642–651, 2008.
[32] R. Mohammadi, M. Saeedifar, H. H. Toudeshky, M. A. Najafabadi, M. Fotouhi, Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach, Reinforced Plastic Composites, Vol. 34, No. 11, pp. 868-878, 2015.
[33] M. Saeedifar, M. Fotouhi, M. A. Najafabadi, H. H. Toudeshky, G. Minak, Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission, Composites Part B, Vol. 85, pp. 113-122, 2016.