مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل یک ربات چرخ دار در حضور لغزش چرخ ها به روش تطبیقی بازگشت گام به گام

نویسندگان
دانشگاه خوارزمی، تهران، ایران
چکیده
در تحلیل کنترل حرکت خودکار ربات‌های چرخدار با فرض عدم لغزش چرخ ها (غلتش خالص) نتایج رضایت بخشی وجود دارد، اما متاسفانه در عمل به خاطر وجود عدم قطعیت‌هایی مانند لغزش چرخ‌ها به خصوص در کاربردهایی همچون کشاورزی که شرایط کار دارای ناهمواری‌ها نیز می‌باشد، نتایج تحت تأثیر قرار گرفته و کیفیت عملکرد روش‌های کنترلی تحت‌الشعاع قرار می‌گیرد. کنترل ایده‌آل سیستم‌های چرخدار با فرض وجود قیود عدم لغزش غیرهولونومیک انجام شده در حالی که در سیستم واقعی به خاطر حضور لغزش‌ها این قیود نقض می‌شوند. در این مقاله، مسئله کنترل تعقیب مسیر ربات چرخ دار در حضور پدیده لغزش انجام شده است. برای در نظر گرفتن اثرات لغزش‌ها، مدل آنها وارد معادلات سینماتیک مساله می‌گردند. به عبارت دیگر این اثرات به عنوان پارامترهای ناشناخته به مدل سینماتیک ایده آل اضافه می شود. این پارامترهای ناشناخته را با یک روش تطبیقی تخمین زده و با الگوریتم کنترلی بازگشت گام به گام سیستم را کنترل می‌نماییم. قانون کنترلی بازگشت گام به گام برای تعقیب مسیرهای مرجع ربات طراحی گردیده و ربات را به صورت مجانبی حول مسیرهای حرکت زمانی مرجع پایدار می‌سازد. نتایج بدست آمده نشان می‌دهد که کنترل‌کننده تطبیقی پیشنهادی می تواند تعقیب مسیر ردیابی را در حضور لغزش چرخ‌ها تضمین کند. در پایان نتایج بدست آمده برای مسیرهای مرجع ارائه گردیده و نتایج مقایسه‌ای کارایی استفاده از تخمین لغزش‌ها در کنترل سیستم را نشان می‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Control of a wheeled robot in presence of sliding of wheels using adaptive backstepping method

نویسندگان English

Ali Keymasi Khalaji
Mostafa Jalalnezhad
Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده English

There exist satisfactory results in the analysis of the motion control of the vehicles with the assumption of nonslip (pure rolling) condition of robot wheeles, But unfortunately in practice due to the presence of uncertainties such as sliding of wheels especially in agriculture applications where working conditions are rough the results and the quality of the control performance of the system are affected. The ideal control of wheeled systems is performed with the assumption of the existence of nonholonomic non-slip constraints, while in the real system these constraints are violated due to the presence of slippages. In this paper the problem of trajectory tracking control of wheeled vehicles in the presence of sliding is addressed. To take sliding effects into account, sliding models are introduced into the kinematic model. In other words, these effects are added as unknown parameters to the ideal kinematic model. For taking into account the sliding effects their mathematical models are introduced in system kinematic model. In another word these effects as an unknown parameters are added to the system ideal kinematics. An integrating parameter adaptation technique and backstepping control algorithm has been utilized in order to control the system. The backstepping control law is designed to track the reference trajectories and make the robot asymptotically stable around the reference trajectories. Finally, the obtained results are presented for tracking reference trajectories and comparison results shows the efficiency of using the estimation of slips in control of the system.

کلیدواژه‌ها English

Wheeled mobile robot
Nonholonomic systems
Trajectory tracking
Backstepping method
[1] A. Keymasi Khalaji, S. A. A. Moosavian, Dynamic modeling and tracking
control of a car with n trailers, Multibody System Dynamics, Vol. 37, No. 2,
pp. 211-225, 2016.
[2] A. Keymasi Khalaji, M. Rahimi Bidgoli, S. A. A. Moosavian, Non-modelbased
control for a wheeled mobile robot towing two trailers, Journal of
Multi-body Dynamics, Vol. 229, No. 1, pp. 97-108, 2015.
[3] A. Keymasi Khalaji, S. A. A. Moosavian, Stabilization of a tractor-trailer
wheeled robot, Journal of Mechanical Science and Technology, Vol. 30, No.
1, pp. 421-428, 2016.
[4] A. Keymasi Khalaji, S. A. A. Moosavian, Switching control of a Tractor-
Trailer wheeled robot, International Journal of Robotics and Automation,
Vol. 30, No. 2, 10.2316/Journal.206.2015.2.206-4068, 2015.
[5] A. Keymasi Khalaji, S. A. A. Moosavian, Modified transpose Jacobian control of a tractor-trailer wheeled robot, Journal of Mechanical Science and Technology, Vol. 29, No. 9, pp. 3961-3969, 2015.
[6] C. Samson, Control of chained systems application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 64-77, 1995.
[7] P. Morin, C. Samson, Control of nonlinear chained systems: From the Routh-Hurwitz stability criterion to time-varying exponential stabilizers, IEEE Transactions on Automatic Control, Vol. 45, No. 1, pp. 141-146, 2000.
[8] E. Mohammadpour, M. Naraghi, Robust torque control of wheeled mobile robots with kinematic disturbances, Amirkabir Journal of Mechanical Engineering, Vol. 43, No. 2, pp. 35-45, 2011.
[9] J. Ackermann, Robust control prevents car skidding, IEEE Control Systems Magazine, Vol. 17, No. 3, pp. 23-31, 1997.
[10] A. Keymasi Khalaji, S. A. A. Moosavian, Robust adaptive controller for a Tractor-Trailer mobile robot, IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 3, pp. 943 - 953, 2014.
[11] A. Keymasi Khalaji, S. A. A. Moosavian, Adaptive sliding mode control of a wheeled mobile robot towing a trailer, Journal of Systems and Control Engineering,Vol. 229, No. 2, pp. 169-183, 2015.
[12] A. Keymasi Khalaji, S. A. A. Moosavian, Fuzzy sliding mode control law for a wheeled mobile robot towing a trailer, Journal of Modares Mechanical Engineering, Vol. 14, No. 4, pp. 91-98, 2014. (in Persianفارسی )
[13] H. Chih-Lyang Hwang Chih-Lyang, C. Li-Jui Chang Li-Jui, Trajectory tracking and obstacle avoidance of car-like mobile robots in an intelligent space using mixed H2/H∞; decentralized control, IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 3, pp. 345-352, 2007.
[14] G. Klančar, I. Škrjanc, Tracking-error model-based predictive control for mobile robots in real time, Robotics and Autonomous Systems, Vol. 55, No. 6, pp. 460-469, 2007.
[15] J. Ye, Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot, Neurocomputing, Vol. 71, No. 7–9, pp. 1561-1565, 2008.
[16] J. Ye, Tracking control for nonholonomic mobile robots: Integrating the analog neural network into the backstepping technique, Neurocomputing, Vol. 71, No. 16–18, pp. 3373-3378, 2008.
[17] C. Y. Chen, T. H. S. Li, Y. C. Yeh, EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots, Information Sciences, Vol. 179, No. 1–2, pp. 180-195, 2009.
[18] C. Chian-Song, L. Kuang-Yow, Hybrid fuzzy model-based control of nonholonomic systems: A unified viewpoint, IEEE Transactions on Fuzzy Systems, Vol. 16, No. 1, pp. 85-96, 2008.
[19] H. Fanga و Ruixia Fana, B. Thuilotb, P. Martinet,Trajectory tracking control of farm vehicles in presence of sliding, Robotics and Autonomous Systemsو
Vol. 54, pp. 828–839, 2006.
[20] I. R. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, S. Burion, Human-robot teaming for search and rescue, IEEE Pervasive Computing, Vol. 4, No. 1, pp. 72-79, 2005.
[21] Yi. J. Song, D. Zhang, J. and Goodwin, Adaptive trajectory tracking control of skid-steered mobile robots, IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2605-2610, 2007.
[22] W. E. Dixon, D. M. Dawson, E. Zergeroglu, A. Behal, Nonlinear Control of Wheeled Mobile Robots, 1st Edition, Springer-Verlag,Vol. 262, pp. 1-32, 2001.
[23] C. Samson, Control of chained systems, application to path following and time-varying point stabilization of mobile robot, IEEE Transactions on Automatic Control, Vol. 39, No. 12, pp 2411–2425. 1995.
[24] Zh. Jing, Ch. Wen, Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations, Berlin: pp. 9-25, Springer, 2008.
[25] S. H. Sadati, M. B. Menhaj, M. Sabzeparvar, Nonlinear adaptive flight control by using backstepping and neural network, Sharif Journal of Industrial Engineering & Management, Vol. 23, No. 38, pp. 51-58, 2007. (In Persian فارسی )
[26] M.Krstić, I. Kanellakopoulos, P. Kokotović, Nonlinear and Adaptive Control Design, pp. 87-121, New York: Wiley, 1995.