مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل‌سازی المان محدود تخریب در مخزن تحت فشار کامپوزیتی نوع IV با استفاده از افزونه WCM در نرم‌افزار آباکوس

نویسندگان
دانشگاه صنعتی اصفهان
چکیده
امروزه هیدروژن به ‌عنوان یک منبع انرژی سازگار با محیط زیست مورد توجه صنعت حمل‌ و ‌نقل قرار گرفته است. استفاده از مخازن تحت فشار کامپوزیتی نوع IV به دلیل نسبت استحکام به وزن مناسب آن‌ها، راه‌حلی مطمئن برای ذخیره گاز هیدروژن متراکم به شمار می‌آید. مخازن تحت فشار کامپوزیتی نوع IV از سه بخش اصلی، لاینر پلیمری، فلنج فلزی و پوسته کامپوزیتی الیاف کربن/اپوکسی تشکیل شده‌اند. در ناحیه عدسی‌های این مخازن به ‌دلیل کاهش شعاع و تجمع رزین، ضخامت لایه‌های کامپوزیتی و زاویه الیاف افزایش می‌یابد و این امر مدل‌سازی این نواحی را در این مخازن به جدی‌ترین چالش تبدیل کرده است. افزونه WCM به منظور شبیه‌سازی المان محدود متقارن محوری یا سه‌بعدی مخازن تحت فشار کامپوزیتی نوع III و IV، برای نرم‌افزار آباکوس ارائه شده است. در این افزونه علاوه‌ بر کمیت‌هایی چون ضخامت لایه‌ها و زاویه الیاف می‌توان کمیت‌های ساختی چون پهنای باند، زاویه انتقال و بخش پایانی را نیز تعیین کرد تا مدل‌سازی دقیق‌تری حاصل شود. در این پژوهش، مخزن تحت فشار کامپوزیتی نوع IV با حجم داخلی دو لیتر، توسط افزونه WCM در نرم‌افزار آباکوس مدل شده است. مقایسه نتایج عددی حاصل از این مدل‌سازی با نتایج تجربی و شبیه‌سازی‌های موجود در مقالات، دقت قابل قبول این مدل‌سازی را نشان می‌دهد. همچنین در این پژوهش، پس از استخراج تنش‌های راستای اصلی ماده و کدنویسی روابط حاکم بر معیارهای شکست مواد کامپوزیتی چون تسای-هیل، تسای- وو و هشین، فشار تخریب مخزن پیش‌بینی شده است که در پژوهش‌های دیگر به آن پرداخته نشده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Finite element modeling of failure in IV type composite pressure vessel using WCM plug-in in ABAQUS software

نویسندگان English

Mohammad Heidari-Rarani
Mohsen Ahmadi-Jebeli
Mechanical Engineering Department, Faculty of Engineering, University of Isfahan
چکیده English

Hydrogen has become an attractive source of energy for transportation industry, which is adaptable to the environment. Using composite pressure vessel type IV for storing compressed hydrogen gas seems to be a safety solution because of their ratio of strength to weight. Type IV composite pressure vessels consist of three main parts of polymeric liner, metallic boss and carbon fiber/epoxy composite shell. In the dome zones of these vessels, the thickness of composite layers and the fiber angle would increase because of accumulation of resin and reduction in radius. This issue is caused the modeling of these vessels to be a serious challenge. The WCM plug-in is presented for simulation of axisymmetric or three-dimensional composite pressure vessels type III and IV in ABAQUS software. In addition to the parameters like layer thicknesses and fiber angles, manufacturing parameters such as bandwidth, transition angle and end fraction could be also defined in this plug-in in order to achieve more accurate results. In this study, a type IV high pressure composite vessel with inner volume of two liters is modeled using the WCM plug-in in ABAQUS software. Numerical results are assessed by the available experimental results in the literature. Moreover, failure pressure of this vessel has been estimated by calculating the on-axis stresses and using failure criteria such as Tsai-Hill, Tsai-Wu and Hashin which is not done in other investigations.

کلیدواژه‌ها English

pressure vessel
Filament winding
WCM plug-in
Burst pressure
[1] J. P. B. Ramirez, D. Halm, J. C. Grandidier, S. Villalonga, F. Nony, 700 bar type IV high pressure hydrogen storage vessel burst–Simulation and experimental validation, International Journal of Hydrogen Energy, Vol. 40, No. 38, pp. 13183-13192, 2015.
[2] J. H. Hong, M. G. Han, S. H. Chang, Safety evaluation of 70MPa-capacity type III hydrogen pressure vessel considering material degradation of composites due to temperature rise, Composite Structures, Vol. 113, No. 1, pp. 127-133, 2014.
[3] S. Aceves, J. Martinez-Frias, O. Garcia-Villazana, Analytical and experimental evaluation of insulated pressure vessels for cryogenic hydrogen storage, International Journal of Hydrogen Energy, Vol. 25, No. 11, pp. 1075-1085, 2000.
[4] C. P. Fowler, A. C. Orifici, C. H. Wang, A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage, International Journal of Hydrogen Energy, Vol. 41, No. 47, pp. 22067-22089, 2016.
[5] B. G. Sun, D. S. Zhang, F. S. Liu, Analysis of the cost-effectiveness of pressure for vehicular high-pressure gaseous hydrogen storage vessel, International Journal of Hydrogen Energy, Vol. 37, No. 17, pp. 13088-13091, 2012.
[6] B. Katia, B. Hervé, Hydrogen high pressure tanks storages: overview and new trends due to H2 Energy specifications and constraints, Proceeding of 16th World Hydrogen Energy Conference (WHEC-16), Lyon, France, June 13-16, 2006.
[7] M. Bertin, D. Halm, B. Magneville, J. Renard, P. Saffré, S. Villalonga, One year OSIRHYS IV project synthesis: Mechanical behaviour of 700 bar type iv high pressure vessel code qualification, Proceeding of 15th European Conference on Composite Materials (ECCM-15), pp. 8, Venise, Italy, June 24-28, 2012.
[8] M. Bertin, S. Villalonga, M. Vernède, C. Magnier, P. Tissier, F. Nony, Mechanical behaviour of 700 bar type IV high pressure vessel: comparison between simulations and experiments through Osirhys IV project, Proceeding of 15th European Conference on Composite Materials(ECCM-15), pp. 8, Venise, Italy, June 24-28, 2012.
[9] S. Villalonga, M. Kempeneers, P. Saffré, J. Renard, D. Halm, F. Nony, OSIRHYS IV Project, 700 bar on-board composite pressure vessel mechanical behaviour prediction with uncertainties knowledge, Proceeding of ASME 2011 Pressure Vessels and Piping Division Conference (PVP2011), American Society of Mechanical Engineers, Baltimore, Maryland, USA, pp. 97-106, July 17-21, 2011.
[10] D. Gray, D. Moser, Finite element analysis of a composite overwrapped pressure vessel, Proceeding of 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Florida, pp. 3506, July 11-14, 2004.
[11] R. P. Willardson, D. L. Gray, T. K. DeLay, Improvements in FEA of Composite Overwrapped Pressure Vessels, Proceeding of Society for the Advancement of Material and Porcess Engineering–Fall Technical Conference, 2009.
[12] D. K. Roylance, Netting analysis for filament-wound pressure vessels, Army Materials and Mechanics Research Center Technical Note (AMMRC TN), Vol. 76, No. 3, USA, 1976.
[13] M. Madhavi, Design and analysis of filament wound composite pressure vessel with integrated-end domes, Defence Science Journal, Vol. 59, No. 1, pp. 73, 2009.
[14] Y. Doh, C. Hong, Progressive failure analysis for filament wound pressure vessel, Journal of Reinforced Plastics and Composites, Vol. 14, No. 12, pp. 1278-1306, 1995.
[15] M. Xia, K. Kemmochi, H. Takayanagi, Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading, Composite Structures, Vol. 51, No. 3, pp. 273-283, 2001.
[16] M. Xia, H. Takayanagi, K. Kemmochi, Analysis of multi-layered filament-wound composite pipes under internal pressure, Composite Structures, Vol. 53, No. 4, pp. 483-491, 2001.
[17] A. Sarkar, R. Banerjee, Net energy analysis of hydrogen storage options, International Journal of Hydrogen Energy, Vol. 30, No. 8, pp. 867-877, 2005.
[18] C. Thomas, Étude des mécanismes d'endommagement des composites fibres de carbone/matrice polyamide: application à la réalisation de réservoirs de stockage de gaz sous haute pression de type IV, PhD Thesis, École Nationale Supérieure des Mines de Paris, Français, 2011. (in French)
[19] H. Roh, T. Hua, R. Ahluwalia, Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles, International Journal of Hydrogen Energy, Vol. 38, No. 29, pp. 12795-12802, 2013.
[20] D. Leh, P. Saffré, P. Francescato, R. Arrieux, S. Villalonga, A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel, International Journal of Hydrogen Energy, Vol. 40, No. 38, pp. 13206-13214, 2015.
[21] D. Leh, B. Magneville, P. Saffré, P. Francescato, R. Arrieux, S. Villalonga, Optimisation of 700 bar type IV hydrogen pressure vessel considering composite damage and dome multi-sequencing, International Journal of Hydrogen Energy, Vol. 40, No. 38, pp. 13215-13230, 2015.
[22] User’s manual, Wound Composite Modeler for ABAQUS V6.14-1, Simulia Inc. 2008.
[23] R. Wang, W. Jiao, W. Liu, F. Yang, A new method for predicting dome thickness of composite pressure vessels, Journal of Reinforced Plastics and Composites, Vol. 29, No. 22, pp. 3345-3352, 2010.
[24] M. Heidari-Rarani, M. Ahmadi-Jabali, E. Baniasadi, Burst modeling of type IV high pressure storage vessel, Proceeding of The 5th International Conference on Composite Characterization, Fabrication and Application (CCFA-5), Tehran, Iran, December 20-21, 2016.
[25] C. C. Liang, H. W. Chen, C.-H. Wang, Optimum design of dome contour for filament-wound composite pressure vessels based on a shape factor, Composite Structures, Vol. 58, No. 4, pp. 469-482, 2002.
[26] A. Paknahad, M. H. Hojjati, A. Fathi, Dome design of composite pressure vessels using particle swarm optimization algorithm, in Proceeding of 23rd Canadian Congress of Applied Mechanics (CANCAM-23), Vancouver, BC, Canada, 2011.
[27] E. J. Barbero, Finite Element Analysis of Composite Materials Using AbaqusTM, pp. 163-165, New York, CRC press, 2013.
[28] Z. Hashin, Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics, Vol. 47, No. 2, pp. 329-334, 1980.