مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدلسازی عددی میکروپمپ فروهیدرودینامیکی(FHD) توسط میدان آهن ربای دائم

نویسندگان
1 دانشگاه صنعتی ارومیه
2 دانشگاه صنعتی ارومیه، ارومیه
چکیده
امروزه نانو سیالات مغناطیسی به دلیل کاربرد های متنوع در زمینه‌های مختلف از جمله پزشکی و صنعت توجه بیشتری را به خود جلب کرده‌اند. در این مقاله، برای اولین بار طرحی برای پمپ کردن فروسیالات و نانو سیالات مغناطیسی توسط نیروی کلوین ناشی از میدان مغناطیسی غیر یکنواخت داخل میکروکانالها ارائه و با عنوان میکروپمپ فروهیدرودینامیکی (FHD) نامگذاری شد. سپس به بررسی عددی جریان نانوسیال مغناطیسی درون میکرو کانال با سطح مقطع چهارگوش در حضور میدان مغناطیسی ناشی از آهنربای دائم پرداخته شد. در کار حاضر، نانوسیال مغناطیسی متشکل از نانو ذرات اکسید آهن که به طور کاملا همگن درون سیال پایه آب مخلوط شده است، استفاده شده است. معادلات حاکم از اضافه کردن ترم نیروی حجمی کلوین به معادلات ناویر-استوکس حاصل شده که به روش حجم محدود و توسط الگوریتم پیزو گسسته شده است. برای مطالعه پارامترهای تاثیر گذار در عملکرد میکرو پمپ FHD، بازه‌ای منتخب از قطر نانوذرات، کسر حجمی نانوذرات، مغناطیس شوندگی اشباع، طول و عرض آهنربا مورد بررسی قرار گرفته‌اند. نتایج نشان داده‌اند که افزایش هر یک از پارامتر‌های مذکور منجر به افزایش سرعت در کانال میشوند که ناشی از افزایش نیروی کلوین در طول کانال می‌باشد. تاثیر قطر نانوذرات مغناطیسی بر سرعت ایجاد شده در کانال نسبت به پارامترهای دیگر بیشتر بود. همچنین آهنربا در حالت عمودی سرعت بیشتری را نسبت به حالت افقی ایجاد می‌کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical simulation of FHD micro pump using magnetic field of permanent magnet

نویسنده English

Mohammad Mehdizadeh youshanloei 2
2 school of Mechanical engineering, Urmia University of Technology (UUT), Urmia
چکیده English

Nowadays, magnetic nanofluids have drawn a lot of attention toward themselves due to various applications in different fields such as medicine and industry. In this paper, for the first time new pumping method for magnetic nanofluids and ferro-fluids is presented. Moreover, magnetic nanofluid flow inside a rectangular channel under the effect of nonuniform magnetic field of permanent magnet is investigated. Iron oxide nanoparticles which lie completely homogeneous inside the based fluid of water are used. The governing equations obtained by adding the Kelvin body force term to the Navier-Stokes equations, and the equations are discretized using finite volume method and PISO algorithm. In order to study the effective parameters in the function of the FHD micro pump, a selected ranges of nanoparticles size, volume fraction of nanoparticles, saturated magnetization, and the length and width of the magnet are studied. The results demonstrate the increase in any of the mentioned parameters leads to rise in velocity magnitude inside the channel. Change in the diameter of magnetic nanoparticles has greatest effect on the velocity magnitude inside the channel. Furthermore, vertical magnet has better performance than horizontal one in FHD micro pump.

کلیدواژه‌ها English

magnetic nanofluid
Ferrohydrodynamics (FHD)
FHD micro pump
Permanent Magnet
[1] L. P. Aoki, H. E. Schulz, M. G. Maunsell, An MHD study of the behavior of an electrolyte solution using 3D numerical simulation and experimental results, Comsol Conference in Boston, University of São Paulo, 2013.
[2] M. Afrand, A. Karimipour, A. A. Nadooshan, M. Akbari, The variation of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field, Physica E: Low-dimensional Systems and Nanostructures, Vol. 84, No. 1, pp. 748-481, 2016.
[3] S. Debamoy, K. M. Isaac, L. Nick, F. Ingrid, Simulation of electrochemical MHD induced flow in a microfluidic cell without channel, AIAA Theoretical Fluid Mechanics Conference, pp. 3392, 2011.
[4] A. Karimipour, A. H. Nezhad, A. D’Orazio, M. H. Esfe, M. R. Safaei, E. Shirani, Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, European Journal of Mechanics-B/Fluids, Vol. 49, pp. 89-99, 2015.
[5] S. Darling, S. Bader, A materials chemistry perspective on nanomagnetism, Journal of Materials Chemistry, Vol. 15, No. 39, pp. 4189-4195, 2005.
[6] Je. He. Ho, Characteristic study of MHD pump with channel in rectangular ducts, Journal of Marine Science and Technology, Vol. 15, No. 4, pp. 315-321, 2007.
[7] A. Shahidian, M. Ghassemi, R. Mohammadi, Effect of Nanofluid properties on Magnetohydrodynamic pump (MHD), Advanced Materials Research, Vol. 403, pp. 663-669, 2012.
[8] A. Shahidian, M. Ghassemi, S. Khorasanizade, G. Ahmadi, Flow analysis of non-newtonian blood in a magnetohydrodynamic pump, IEEE Transactions on Magnetics, Vol. 45, No. 6, pp. 2667-2670, 2009.
[9] M. Kiyasatfar, N. Pourmahmoud, M. Golzan, I. Mirzaee, investigation of thermal behavior and fluid motion in direct current magnetohydrodynamic pumps, Thermal Science, Vol. 18, pp. 551-562, 2014.
[10] K. Ito, T. Takahashi, T. Fujino, M. Ishikawa, Influences of channel size and operating conditions on fluid behavior in a MHD micro pump for micro total analysis system, Journal of International Council on Electrical Engineering, Vol. 4, No. 3, pp. 220-226, 2014.
[11] R. E. Rosenweeig, Ferrofluids, Magnetically Controllable Fluids and Their Applications, pp. 50-85, Cambridge, Ferrohydrodynamics Cambridge University Press, 1997.
[12] B. M. Berkovsky, V. E. Medvedev, M. S. Krakov, Magnetic Fluids, Engineering Applications, pp. 90-112, Oxford, Oxford University Press, 1993.
[13] B. M. Berkovsky, V. G. Bashtovoy, Magnetic Fluids and Applications Handbook, pp. 40-65, New York, Begell House, 1996.
[14] I. Sharifi, H. Shokrollahi, S. Amir, Ferrite-based magnetic nanofluids used in hydrothermia applications, Journal of Magnetism and Magnetic Materials, Vol. 324, No. 6, pp. 903-915, 2012.
[15] M. Bahiraei, M. Hangi, Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field, Energy Conversion and Management, Vol. 76, pp. 1125-1133, 2013.
[16] Q. A. Pankhurst, J. Connoly, S. K. Jones, J. Dobston, Applications of magnetic nanoparticle in biomedicine, Journal of Physics D: Applied Physics, Vol. 36, No. 13, pp. R167, 2003.
[17] S. Yekani Motlagh, S. Deyhim, Numerical simulation of magnetic nanoparticle delivery at location f abdominal aortic bifurcation using single wire magnetic source, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 56- 47, 2017. (in Persian فارسی)
[18] C. C. Cho, Influence of magnetic field on natural convection and entropy generation in Cu-water nanofluid-filled cavity with wavy surfaces, International Journal of Heat and Mass Transfer, Vol. 101, pp. 637-647, 2016.
[19] C. S. K. Raju, N. Sandeep, Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: A numerical study, Journal of Magnetism and Magnetic Materials, Vol. 421, pp. 216-224, 2016.
[19] A. Malvandi, Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field, Journal of Magnetism and Magnetic Materials, Vol. 406, pp. 95-102, 2016.
[20] C. S. K. Raju, N. Sandeep, V. Sugunamma, Unsteady magneto-nanofluid flowcaused by a rotating cone with temperature dependent viscosity: A surgical implant application, Journal of Molecular Liquids, Vol. 222, pp. 1183-1191, 2016.
[21] A. Muneer, M. A. Ismael, A. J. Chamkha, A. M. Rashad, Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field, Journal of Magnetism and Magnetic Materials, Vol. 416, pp. 25-36, 2016).
[22] M. Sheikholeslami, M. Shamlooei, Magnetic source influence on nanofluid flow in porous medium considering shape factor effect, Physics Letters A, Vol. 381, No. 36, pp. 3071-3078, 2017.
[23] M. Sheikholeslami, H. B. Rokni, Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity, The European Physical Journal Plus, Vol. 132, No. 5, pp. P238, 2017.
[24] M. Sheikholeslami, Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method, Journal of Molecular Liquids, Vol. 234, pp. 364-374, 2017.
[25] M. Sheikholeslami, D. D. Ganji, Numerical analysis of nanofluid transportation in porous media under the influence of external magnetic source, Journal of Molecular Liquids, Vol. 233, pp. 499-507, 2017.
[26] M. Sheikholeslami, H. B. Rokni, Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field, International Journal of Heat and Mass Transfer, Vol. 114, pp. 517-526, 2017.
[27] M. Sheikholeslami, H. B. Rokni, Simulation of nanofluid heat transfer in presence of magnetic field: A review, International Journal of Heat and Mass Transfer, Vol. 115, pp. 1203-1233, 2017.
[28] A. Aminfar, M. Mohammadpourfard, Y. Narmani Kahnamouei, A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model, Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 1963-1972, 2011.
[29] C. J. Ho, W. K. Liu, Y. S. Chang, C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, Vol. 49, No. 8, pp. 1345-1353, 2010.
[30] G. A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure, International Journal of Thermal Sciences, Vol. 66, pp. 51-62, 2013.
[31] S. Y. Motlagh, H. Soltanipour, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno's two-phase model, International Journal of Thermal Sciences, Vol. 111, pp. 310-320, 2017.
[32] S. Y. Motlagh, S. Taghizadeh, H. Soltanipour, Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model, Advanced Powder Technology, Vol. 27, No. 6, pp. 2526-2540, 2016.
[33] E. Tzirtzilakis, Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles, Physics of Fluids, Vol. 27, No. 6, pp. 061902, 2015.