[1] A.C. Eringen, Nonlocal Polar Field Models, Academic Press, New York, 1976.
[2] A. C. Eringen, On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, pp. 4703-4710, 1983.
[3] S. C. Pradhan, J. K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, Journal of Sound and Vibration, Vol. 325, pp. 206-223, 2009.
[4] T. Murmu, S. C. Pradhan, Small-scale effects on the free in-plane vibration of nanoplates by nonlocal continuum model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, pp. 1628-1633, 2009.
[5] R. Ansari, R. Rajabiehfard, B. Arash, Nonlocal finite element for vibrations of embedded multi-layered graphene sheets, Computational Materials Science, Vol. 49, No. 4, pp. 831-838, 2010.
[6] R. Ansari, B. Arash, H. Rouhi, Vibration characteristics of embedded multi-layered graphene sheets in thermal environment, Composite Structures, Vol. 93, No. 9, pp. 2419-2429, 2011.
[7] L. Shen, H. S. Shen, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environment, Computational Materials Science, Vol. 48, No. 3, pp. 680-685, 2010.
[8] R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A, Vol. 375, No. 1, pp. 53-62, 2010.
[9] B. Arash, Q. Wang, Vibration of single- and double-layered graphene sheets, Journal of Nanotechnology in Engineering and Medicine, Vol. 2, No. 1, pp. (011012)1-7, 2011.
[10] R. Nazemnezhad, Sh. Hosseini-Hashemi, H. Shokrollahi, Free vibration analysis of bilayer graphenes with interlayer shear effect, Modares Mechanical Engineering, Vol. 14, No. 7, pp. 131-138, 2014. (In Persianفارسی )
[11] S.R. Asemi, A. Farajpour, Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects, Physica E: Low-dimensional Systems and Nanostructures, Vol. 60, No. 7, pp. 80-90, 2014.
[12] A. Alibeigloo, Free vibration analysis of nano plate usin three dimensional theory of elasticity, Acta Mechanica, Vol. 222, pp. 149-159, 2011.
[13] A. R. Setoodeh, P. Malekzadeh, A. R. Vosoughi, Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 226, No. 7, pp. 1896-1906, 2012.
[14] Z. B. Shen, H. L. Tang, D. K. Li, G. J. Tang, Vibration of fingle-layered graphene sheet based nanomechanical sensor via nonlocal Kirchhoff plate theory, Computational Material Science, Vol. 61, pp. 200-205, 2012.
[15] T. Natsuki, J. X. Shi, Q. Q. Ni, Vibration analysis of nanomechanical mass sensor using double-layered graphene sheets resonators, Journal of Applied Physics, Vol. 114, No. 9, pp. 73-78, 2013.
[16] K. Kiani, Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials, Composite Structures, Vol. 107, pp. 610-619, 2014.
[17] R. Aghababaei , J. N. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, Vol. 326, pp. 277-289, 2009.
[18] B. Arash, Q. Wang , A review on the application of nonlocal elastic in modeling of carbon nanotubes and graphenes, Computational Materials Science, Vol. 51, pp. 303-317, 2012.
[19] A. C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
[20] Yang Zhang, Z. X. Lei, L. W. Zhang, K. M. Liew, J. L. Yu, Nonlocal Continuum model for vibration of single-layered graphene sheets based on the element-free Kp-Ritz method, Engineering Analysis With Boundary Element, Vol. 56, pp. 90-97, 2015.
[21] S. C. Pradhan, A. Kumar, Vibration analysis of orthotropic grapheme sheets using nonlocal elasticity theory and differential quadrature method, Composite Structures, Vol. 93, pp. 774-779, 2011.
[22] X. Q. He, S. Kitipornchai, K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology, Vol. 16, pp. 2086-2091, 2005.