مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تأثیر چیدمان هیت سینک‌ها و الگوی جریان هوای عبوری از روی فین‌ها بر عملکرد حرارتی سامانه هواساز ترموالکتریک

نویسندگان
1 دانشکده مهندسی مکانیک و هوافضا- دانشگاه صنعتی شیراز
2 دانشگاه صنعتی شیراز
چکیده
ادر یک هواساز ترموالکتریک معمولاً از تعدادی ماژول ترموالکتریک با فین‌های هوا خنک جابه‌جایی اجباری استفاده می‌شود. در این پژوهش سعی شده است تا تأثیر چیدمان ماژول‌ها نسبت به یکدیگر و همچنین الگوی جریان هوای عبوری از روی آنها بر عملکرد حرارتی مجموعه مورد مطالعه قرار گیرد. بدین منظور، عملکرد حرارتی یک سامانه هواساز ترموالکتریک شامل چهار ماژول ترموالکتریک در سه چیدمان؛ موازی، سری با جریان هوای سرد و گرم هم جهت و سری با جریان هوای سرد و گرم مخالف بررسی و مقایسه شده است. جهت بررسی توأمان عملکرد حرارتی و افت فشار تحمیل شده به سیستم از تحلیل آنتروپی استفاده شده است. بعلاوه، تاثیر تغییر جریان الکتریکی اعمالی به ما‌ژول‌ها و دبی هوای عبوری از کانال‌های سرد و گرم بر ضریب عملکرد مجموعه برای چیدمان‌های مختلف مورد مطالعه قرار گرفته است. نتایج بیان‌گر این است که چیدمان هیت سینکها تأثیر چشمگیری بر عملکرد سامانه هواساز ترموالکتریک دارد به طوری که ضریب عملکرد سرمایشی و گرمایشی سیستم هواساز در حالت چیدمان سری به ترتیب1.4 و 1.1 برابر حالت چیدمان موازی است. همچنین نتایج تحلیل انتروپی نشان داد که در حالت چیدمان سری گرچه افت فشار تحمیل شده به سیستم افزایش می-یابد ولی این افزایش به حدی نیست که بتواند مزیت استفاده از چیدمان سری را کمرنگ نماید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study on the effect of heat sinks layout and air flow pattern through the fins on thermal performance of thermoelectric air-handling units

نویسندگان English

Farhad Hadian fard 1
Amir Omidvar 2
Mohammad Naserian 2
1 Department of Mechanical and Aerospace Engineering, Shiraz University of Technology
2 Shiraz University of Technology
چکیده English

In a thermoelectric air-handling unit, a number of thermoelectric modules with forced convection heat sinks are used. In this research, it is tried to investigate the effect of module arrangement and air flow pattern on thermal performance of the system. For this purpose, the thermal performance of an air-handling unit including four thermoelectric modules with three different heat sinks layouts; parallel, series with unidirectional flow and series with counter flow were compared. The entropy analysis has been used to study the thermal performance and pressure drop imposed on the system. In addition, the effect of the electric current applied to the modules and the hot and cold air flows on the coefficient of performance of the system has been studied for three different layouts. Results indicated that, heat sinks layout and air flow pattern through the fins have significant effects on the thermal performance of a thermoelectric air-handling unit. The coefficient of performance for cooling and heating in the series arrangement are 1.4 and 1.1 times of those in parallel arrangement, respectively. The results of the entropy analysis showed that although the pressure drop imposed on the system in the layout of the series is greater than the parallel arrangement, this cannot reduce the advantage of using the series layout.

کلیدواژه‌ها English

Thermoelectric
heat sink layout
Flow pattern
air-handling unit
[1] M. De Marchis, C. M. Fontanazza, G. Freni, A. Messineo, B. Milici, E. Napoli, V. Notaro, V. Puleo, A. Scopa, Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model, Procedia Engineering, Vol. 70, pp. 439-448, 2014.
[2] H. Ramos, A. Borga, Pumps as turbines: an unconventional solution to energy production, Urban Water, Vol. 1, No. 3, pp. 261-263, 1999.
[3] H. Ramos, D. Covas, L. Araujo, M. Mello, Available energy assessment in water supply systems, Proceedings of The 31th International Association for Hydro-Environment Engineering and Research Congress, Seoul, Korea, September 11-16, 2005.
[4] T. Agarwal, Review of pump as turbine (PAT) for micro-hydropower, International Journal of Emerging Technology and Advanced Engineering, Vol. 2, No. 11, pp. 163-169, 2012.
[5] A. Rodrigues, A. A. Williams, P. Singh, F. Nestmann, Hydraulic Analysis of a Pump as a Turbine with CFD and Experimental Data, Proceedings of The Computational Fluid Dynamics for Fluid Machinery, London, UK, November 18, 2003.
[6] S. Derakhshan, A. Nourbakhsh, Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation, Experimental Thermal and Fluid Science, Vol. 32, No. 8, pp. 1620-1627, 2008.
[7] J. Fernández, R. Barrio, E. Blanco, J. Parrondo, A. Marcos, Experimental and numerical investigation of a centrifugal pump working as a turbine, Proceeding of ASME 2009 Fluids Engineering Division Summer Meeting Conference, Vail, Colorado, USA, August 2–6, 2009.
[8] P. Singh, F. Nestmann, Experimental optimization of a free vortex propeller runner for microhydro application, Experimental Thermal and Fluid Science, Vol. 33, No. 6, pp. 991-1002, 2010.
[9] H. Nautiyal, Varun, A. Kumar, S. Yadav, Experimental investigation of centrifugal pump working as turbine for small hydropower systems, Energy Science and Technology, Vol. 1, No. 1, pp. 79-86, 2011.
[10] O. Fecarotta, A. Carravetta, H. M. Ramos, CFD and comparisons for a pump as turbine mesh reliability and performance concerns, International Journal of Energy and Environment, Vol. 2, No. 1, pp. 39-48, 2011.
[11] S. S. Yang, F. Y. Kong, S. Derakhshan, Theoretical, numerical and experimental prediction of pump as turbine performance, Renewable Energy, Vol. 48, No. 1, pp. 507-513, 2012.
[12] S. S. Yang, F. Y. Kong, W. M. Jiang, Q. X. Yun, Effects of impeller trimming influencing pump as turbine, Computers & Fluids, Vol. 67, pp. 72-78, 2012.
[13] A. Bozorgi, E. Javidpour, A. Riasi, A. Nourbakhsh, Numerical and experimental study of using axial pump as turbine in pico hydropower plants, Renewable Energy, Vol. 53, pp. 258-264, 2013.
[14] R. N. Patel, S. V. Jain, A. Swarnkar, K. H. Motwani, Effects of impeller diameter and rotational speed on performance of pump running in turbine mode, Journal of Energy Energy Conversion and Management, Vol. 89, pp. 6-19, 2015.
[15] E. Dribssa, T. Nigussie, B. Tsegaye, Performance analysis of centrifugal pump operating as turbine for identified micro/pico hydro site of ethiopia, International Journal of Engineering Research and General Science, Vol. 3, No. 3, pp. 6-19, 2015.
[16] W. G. Li, Effects of viscosity on turbine mode performance and flow of a low specific speed centrifugal pump, Applied Mathematical Modelling, Vol. 40, No. 2, pp. 904-926, 2016.
[17] D. Mohammadipour, A. Najafi, H. Alemi, A. Riasi, Numerical Analysis on the Effects of Impeller Geometry Parameters for a Centrifugal Pump in Reverse Operation, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 13-24, 2017. (in Persian فارسی )
[18] S. Huang., G. Qiu, X. Su, J. Chen, W. Zou, Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle, Renewable Energy, Vol. 108, pp. 64-71, 2017.
[19] J. W. Li, Y. N. Zhang, K. H. Liu, H. Z. Xian, J. X. Yu, Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode, Journal of Hydrodynamics, Vol. 29, No. 4, pp. 603-609, 2017.
[20] M. H. Shojaeefard, M. Tahani, M. B. Ehghaghi, M. A. Fallahian, M. Beglari, Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid, Computers & Fluids, Vol. 60, pp. 61-70, 2012.
[21] A. Bozorgi, Small axial turbine blade optimization with very little loss in height, M. Sc Thesis, Deprtment of Mechanical Engineering, University of Tehran, Tehran, 2011. (In Persian فارسی )
[22] E. Alizadeh, S. Hosseini, A. Riasi, Numerical investigation of the effect of locating groove on the runner cone of pump-turbine on the vortex flow in the draft tube, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 352-360, 2014. (in Persian فارسی )
[23] Help Navigator, ANSYS CFX, Release 17.2 CFX-Solver Modeling Guide, 2016.
[24] H. Alemi, A. Nourbakhsh, M. Raisee, F. Najafi, Effects of volute curvature on performance of a low specific-speed centrifugal pump at design and off-design conditions, Journal of Turbomachinery, Vol. 137, No. 4, pp. 1-10, 2015.
[25] R. J. Moffat, Contributions to the theory of single-sample uncertainty analysis. ASME Journal of Fluids and Engineering, Vol. 104, No. 2, pp. 250-260, 1982.