مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

حل عددی جریان و انتقال حرارت در کانال حفره‌دار با استفاده از مدل‌های آشفتگی رینولدز پایین

نویسندگان
1 گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران
2 دانشگاه تهران
چکیده
در این مقاله به بررسی عملکرد سه مدل اغتشاشی k-ε ناحیه‌ای، k-ε رینولدز پایین خطی و k-ε رینولدز پایین غیرخطی در پیش-بینی جریان و انتقال حرارت داخل کانال حفره‌دار پرداخته شده است. همچنین اثر اعمال ترم NYP به جای ترم اصلاح مقیاس طول YAP مورد مطالعه قرار گرفته است. حفره‌ها تجهیزات انتقال حرارتی هستند که در پره‌های توربین گاز به کار می‌روند تا میزان انتقال حرارت را بالا ببرند. این تجهیزات بصورت مانعی در برابر جریان قرار نمی‌گیرند، بنابراین افت فشار زیادی را ایجاد نمی-کنند. در این پژوهش به منظور حل معادلات حاکم بر جریان و انرژی از روش حجم محدود به همراه الگوریتم سیمپل استفاده شده است. نتایج بدست آمده با ترم اصلاح YAP حاکی از آن است که مدل غیرخطی نسبت به مدل‌های ناحیه‌ای و خطی، جریان چرخشی بزرگتری را درون حفره پیش‌بینی می‌کند. همچنین شدت برخورد و جهش جریان در این مدل از دو مدل دیگر بیشتر است. با مشاهده نتایج انتقال حرارت درمی‌یابیم که مدل ناحیه‌ای، میزان انتقال حرارت را کمتر از نتایج تجربی بدست می‌آورد. با اعمال مدل خطی، نتایج بهتری از انتقال حرارت در داخل حفره و لبه عقبی آن ارائه می‌گردد. نسبت به این دو مدل، مدل غیرخطی هم در لبه عقبی حفره و هم در فضای صاف بین حفره‌ها پیش‌بینی بهتری را بدست می‌‌آورد. در مقایسه با نتایج بالا، اعمال ترم NYP به جای ترم YAP در مدل‌های خطی و غیرخطی، باعث ارائه نتایج دقیق‌تری از انتقال حرارت در راستای عرضی و لبه عقبی حفره می‌گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Computation of flow and heat transfer over dimpled channels using low-Reynolds number turbulence models

نویسندگان English

Mohammad Fazli 1
M. Raisee Dehkordi 2
1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 University of Tehran
چکیده English

In this paper, the performance of three turbulence models, zonal k-ε, linear low-Reynolds k-ε and nonlinear low-Reynolds k-ε in the prediction of flow and heat transfer through a dimpled channel is investigated. Furthermore, the effect of YAP term replacement with NYP length scale correction term is studied. Dimples are heat transfer devices which are employed in gas turbine blades to increase the heat transfer levels. These devices do not act as an obstacle for flow, and thus they produce low pressure losses. In this study, the governing equations on flow and energy are solved using the finite volume method together with the SIMPLE algorithm. The results obtained with YAP term indicate that the nonlinear model predicts larger recirculation flow inside the dimple than zonal and linear models. Also, the intensity of impingement and upwash flow in this model is greater than other models. Heat transfer results show that the zonal model predicts the heat transfer levels lower than experimental measurement. Using the linear model leads to a better prediction of heat transfer inside the dimples and their back rim. Compared to these models, the nonlinear model yields a better prediction not only for the smooth area between the dimples, but in the back rim of the dimple. The replacement of the YAP term with the NYP term in linear and nonlinear models leads to more accurate results for heat transfer in dimple span-wise direction and back rim.

کلیدواژه‌ها English

Dimpled channel
Turbulence Modeling
nonlinear model
Heat Transfer
[1] M. K. Chyu, Y. Yu, H. Ding, Heat Transfer Enhancement in Rectangular Channels with Concavities, Enhanced Heat Transfer, Vol. 6, No. 6, pp. 429-439, 1999.
[2] H. K. Moon, T. O’Connell, B. Glezer, Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage, Journal of Engineering for Gas Turbines and Power, Vol. 122, No. 2, pp. 307-313, 2000.
[3] N. K. Burgess, M. M. Oliveira, P. M. Ligrani, Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel, Journal of Heat Transfer, Vol. 125, No. 1, pp. 11-18, 2003.
[4] P. M. Ligrani, M. M. Oliveira, T. Blaskovich, Comparison of Heat Transfer Augmentation Techniques, AIAA Journal, Vol. 41, No. 3, pp. 337-362, 2003.
[5] J. Park, P. R. Desam, P. M. Ligrani, NUMERICAL PREDICTIONS OF FLOW STRUCTURE ABOVE A DIMPLED SURFACE IN A CHANNEL, Numerical Heat Transfer, Part A: Applications, Vol. 45, No. 1, pp. 1-20, 2004.
[6] M. A. Elyyan, D. K. Tafti, Large Eddy Simulation Investigation of Flow and Heat Transfer in a Channel With Dimples and Protrusions, Journal of Turbomachinery, Vol. 130, No. 4, pp. 041016-041016-9, 2008.
[7] S. D. Hwang, H. G. Kwon, H. H. Cho, Heat transfer with dimple/protrusion arrays in a rectangular duct with a low Reynolds number range, International Journal of Heat and Fluid Flow, Vol. 29, No. 4, pp. 916-926, 2008.
[8] J. Turnow, N. Kornev, V. Zhdanov, E. Hassel, Flow structures and heat transfer on dimples in a staggered arrangement, International Journal of Heat and Fluid Flow, Vol. 35, pp. 168-175, 2012.
[9] S. B. Pope, A more general effective-viscosity hypothesis, Journal of Fluid Mechanics, Vol. 72, No. 2, pp. 331-340, 1975.
[10] T. J. Craft, B. E. Launder, K. Suga, Development and application of a cubic eddy-viscosity model of turbulence, International Journal of Heat and Fluid Flow, Vol. 17, No. 2, pp. 108-115, 1996.
[11] T. J. Craft, H. Iacovides, J. H. Yoon, Progress in the Use of Non-Linear Two-Equation Models in the Computation of Convective Heat-Transfer in Impinging and Separated Flows, Flow, Turbulence and Combustion, Vol. 63, No. 1, pp. 59-80, 2000.
[12] M. Raisee, A. Noursadeghi, H. Iacovides, Application of a non-linear k-ε; model in prediction of convective heat transfer through ribbed passages, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 14, No. 3, pp. 285-304, 2004.
[13] M. Raisee, H. Alemi, H. Iacovides, Prediction of developing turbulent flow in 90°-curved ducts using linear and non-linear low-Re k–ε models, International Journal for Numerical Methods in Fluids, Vol. 51, No. 12, pp. 1379-1405, 2006.
[14] M. Vaezi, M. Raisee, Prediction of fluid flow through U-bend channels using linear and nonlinear models of turbulence, Modares Mechanical Engineering, Vol. 17, No. 6, pp. 423-432, 2017. (in Persianفارسی )
[15] B. E. Launder, B. I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-137, 1974.
[16] W. P. Jones, B. E. Launder, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, Vol. 15, No. 2, pp. 301-314, 1972.
[17] K. Suga, Development and Application of a Non-Linear Eddy Viscosity Model Sensitized to Stress and Strain Invariants, PhD Thesis, Faculty of Technology, University of Manchester, 1995.
[18] T. J. Craft, B. E. Launder, K. Suga, Models through the use of deformation invariants and non-linear elements, Proceedings of IAHR, 5th International Symposium on Refined Flow Modeling and Turbulence Measurements, Paris, 1993.
[19] C. R. Yap, Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows, PhD Thesis, Faculty of Technology, University of Manchester, 1987.
[20] K. Hanjalic, Some resolved and unresolved issues in modelling non-equilibrium and unsteady turbulent flows, proceeding of 3rd International Symposium on Engineering Turbulence Modelling and Experiments, Crete, Greek, 1996.
[21] H. Iacovides, M. Raisee, Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades, International Journal of Heat and Fluid Flow, Vol. 20, No. 3, pp. 320-328, 1999.
[22] P. A. Durbin, Near-wall turbulence closure modeling without “damping functions”, Theoretical and Computational Fluid Dynamics, Vol. 3, No. 1, pp. 1-13, 1991.
[23] F. S. Lien, M. A. Leschziner, A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation, Computer Methods in Applied Mechanics and Engineering, Vol. 114, No. 1, pp. 123-148, 1994.
[24] C. M. Rhie, W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, Vol. 21, No. 11, pp. 1525-1532, 1983.
[25] H. Iacovides, The computation of turbulent flow through stationary and rotating U-bends of with rib-roughened surfaces, Proceedings of the 11th International Conference on Laminar and Turbulent Flows, Swansea, U.K., 1997.