مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و تست موتور مقیاس کوچک جهت تحلیل نوسانات فشار

نویسندگان
1 دانشگاه گیلان، رشت، ایران
2 عضو هیئت علمی گروه مهندسی مکانیک دانشکدۀ فنی دانشگاه گیلان
چکیده
تحلیل نوسانات فشار موتورهای موشک سوخت جامد با استفاده از تست‌های استاتیک به علت هزینه بالای آنها در موتورهایی با اندازه‌های بزرگ، بسیار محدود بوده و بررسی پارامترهای مختلف تقریبا غیرممکن می‌باشد. برای حل این مشکل، به طراحی موتور مقیاس کوچک برای موتور نمونه اصلی مورد نظر پرداخته می‌شود. در این مقاله ابتدا روند طراحی یک موتور مقیاس کوچک چهار جزئی با نام 1881 با مقیاس 1:31 با الگوبرداری از پرتابگر شاتل فضایی و آریان 5 در مدلسازی و شبیه سازی مورد بحث و بررسی قرار گرفته است. پارامترهای مدلسازی و طراحی موتور مقیاس کوچک با استفاده از روش پی باکینگهام بطور خلاصه ارائه و سپس مشخصات عملکردی و ابعادی و روش تحلیل داده ها نیز بیان گردیده است. برای ارزیابی موتور طراحی شده، سه تست موفق انجام شد و داده های فشار بر حسب زمان و همچنین نوسانات آنها مورد تحلیل و بررسی قرار گرفت. نتایج نشان می دهد که علی رغم استفاده از تئوری پی باکینگهام در مقیاس زنی موتور سوخت جامد، شیمی و سوزش سوخت متأثر از خطاهای بمب کرافورد و جریان واقعی محصولات احتراق بوده و در بیشتر موارد تصحیح خطا بین داده های سوخت از بمب کرافورد و آنچه در موتور بکار می رود، اجتناب ناپذیر است. از سوی دیگر وجود حجم خالی در ابتدای گرین و مابین بخش های میانی، نقش مهمی در نوسان سازی فشار داشته و پس از اتمام سوزش یا کوچک شدن، نوسانات نیز یکنواخت می گردند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design and Test of Sub Scaled Motor for Evaluation of Pressure Oscillations

نویسندگان English

Rohollah Taherinezhad 1
Gholam Reza Zarepour 2
1 دانشجوی دکتری
2 Mechanical Faculty of Guilan University
چکیده English

Evaluation of pressure oscillation of solid rocket motors in actual conditions requires static tests. These test have a large application in evaluation of motor various parameters effect on its operation. Using of these tests are very limited due to their high costs and so, evaluation of various parameters is nearly impossible. To solve this problem, sub scaled solid rocket motor must be designed. In this paper, designing process of space shuttle sub scaled solid boosters, called 1881, with scale 1:31 has been proposed. Space shuttle and ariane 5 boosters have been argued to modeling and simulation. Sub scaled motor modeling and design parameters using Buckingham’s Pi theorem and then, operation and dimensional properties have been presented. Three tests for evaluation of designed motor were done successfully and pressure and thrust history and its oscillations have been evaluated. Results show that for facility of fitting and reduction of test cost in subscale motors, using of Tan-Cu in throat instead of graphite and flange design of joints are very useful. Despite of using Buckingham’s Pi theorem in solid motor scaling, propellant chemistry and its burning rate are affected of Crawford bomb and real flow of combustion products and in many case, error correction between Crawford and motor data is inevitable. On the other hand, existence of empty volume in forward segments and others, plays an important role in pressure oscillations and after end of burning or reducing, oscillations will be uniform.

کلیدواژه‌ها English

Sub scaled motor
Pressure oscillation
Buckingham’s Pi
Solid Propellant
[1] Q. Zhang, Z.j. Wei, W.x. Su, J.w. Li and N.f. Wang, "Theoretical Modeling and Numerical Study for Thrust-Oscillation Characteristics in Solid Rocket Motors," JOURNAL OF PROPULSION AND POWER, vol. 28, no. 2, pp. 312-322, March–April 2012.
[2] L. Parassouramin, "Pressure oscillations in sub-scale solid rocket motors with a star-shaped grain," ONERA, Mauzac, 2012.
[3] M. Prévost, J. Godon and O. Innegraeve, "Thrust Oscillations in reduced Scale Solid Rocket Motors, part I: Experimental Investigations," in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 2005.
[4] G. GUPTA, L. JAWALE and B. BHATTACHARYA, "Various Methods for the Determination of the Burning Rates of Solid Propellants - An Overview," Central European Journal of Energetic Materials, vol. 12, no. 3, pp. 593-620, 2015.
[5] M. R. Ghelichkhani, A. R. Mohmmadi and M. M. Heidari, "Burning rate Measurement of solid Propellant using Small-scale Motors," Modares Mechanical Engineering, vol. 15, no. 3, pp. 219-230, 2015, (in Persianفارسی ).
[6] G. AVALON and T. JOSSET, "Cold Gas Experiments Applied to the Understanding of Aeroacoustic Phenomena inside Solid Propellant Boosters," in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 2006.
[7] A. C. Cortopassi, E. Boyer2 and K. K. Kuo3, "date: A Subscale Solid Rocket Motor for Characterization of Submerged Nozzle Erosion," in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, 2009.
[8] R. S. FRY, "SOLID PROPELLANT TEST MOTOR SCALING," 2001.
[9] S. Ballereau, F. Godfroy, S. Gallier, O. Orlandi and J. Thepenier, "EVALUATION METHOD OF THRUST OSCILLATIONS IN LARGE SRM – APPLICATION TO SEGMENTED SRM’s," in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, 2011.
[10] C. Ralston, "RSRM Design and Manufacturing Baseline," ATK , 2005.
[11] F. S. Blomshield and C. J. Bicker, "PRESSURE OSCILLATIONS IN SHUTTLE SOLID ROCKET MOTORS," AIAA, p. 10, 1977.
[12] M. R. Lara, "ATK Space Propulsion Products Catalog," ATK, 2008.
[13] R. F. STEIDEL, V. CASTELLI, J. W. MURDOCK and L. MEIROVITCH, "Mechanics of Solids and Fluids," in MARKS' STANDARD HANDBOOK FOR MECHANICAL ENGINEERS, California, Berkeley, McGraw-Hill Companies, 1999, p. 79.
[14] U. A. NIMIS, "METHOD FOR OBTAINING EMPERICAL CORRELATIONS FOR PREDICTION CRACK PROPAGATION IN A BURNING SOLID PROPELLANT GRAIN," PENNSILVANIA STATE UNIVERSITY, 1988.
[15] A. I. Moreno, A. Jarzabek, M. A. Gonza´lez and J. M. Perales, "Optimizing multidisciplinar y scaled tests in terrestrial atmosphere for extraterrestrial unmanned aerial vehicle missions," Aerospace Engineer ing, vol. 230, no. 1, pp. 77-89, 2016.
[16] F. VUILLOT, J. C. TRAINEAU, M. PREVOST and N. LUPOGLAZOFF, "EXPERIMENTAL VALIDATION OF STABILITY ASSESSMENT METHODS FOR SEGMENTED SOLID PROPELLANT MOTORS," in AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Montery, 1993.
[17] J. Vétel, F. Plourde and S. Doan-Kim, "Influence of Inhibitor Shape in Small Scale Motors and Cold Gas Set-up," in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 2003.
[18] M. Prévost, A. Le Quellec and J. C. Godon, "Thrust Oscillations in reduced Scale Solid Rocket Motors, A new configuration for the MPS of Ariane 5," in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 2006.
[19] Y. Fabignon, J. Dupays, G. Avalon, F. Vuillot, N. Lupoglazoffb, G. Casalis and M. Prévost, "Instabilities and pressure oscillations in solid rocket motors," Aerospace Science and Technology, vol. 7, pp. 191-200, 2003.
[20] S. GALLIER and F. GODFROY, "Computational Study of Turbulence in a Subscale Solid Rocket Motor," in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, 2004.
[21] R. I. Reis, W. K. Shimote and L. C. Pardini, "Degradation in the nozzle materials of subscale motor in a static firing test," UNIFA, vol. 29, no. 1, pp. 17-26, 2016.
[22] A. Parhi, V. Mahesh, A. Shaji, G. Levin, P. J. Abraham and V. Srinivasan, "Challenges in the development of a slow burning solid rocket booster," Aerospace Science and Technology, vol. 8, no. 4, p. 8, 2015.
[23] D. R. Greatrix, "Scale Effects on Solid Rocket Combustion Instability Behaviour," energies, pp. 90-107, 2011.
[24] A. Rajendra, L. Raman, S. K. Athithan and M. C. Uttam, "Empirical Methods to Estimate the Burn Rate Scale Up Factor from Sub-scale to Full Scale Solid Rocket Motors," Defence Science Journal, vol. 45, no. 1, pp. 43-45, January 1995.
[25] G. p. SUTTON and O. BIBLARZ, Rocket Propulsion Elements, vol. Eighth, Hoboken, New Jersey: John Wiley & Sons, 2010.