[1] G. Hoogers, Fuel Cell Technology Handbook, pp. 3-5, New York: CRC press, 2014.
[2] C. Rayment, S. Sherwin, Introduction to Fuel Cell Technology, pp. 11-12, Notre Dame: University of Notre Dame, 2003.
[3] H. Tsuchiya, O. Kobayashi, Mass production cost of PEM fuel cell by learning curve, International Journal of Hydrogen Energy, Vol. 29, No. 10, pp. 985-990, 2004.
[4] S. Dhakate, R. Mathur, B. Kakati, T. Dhami, Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell, International Journal of Hydrogen Energy, Vol. 32, No. 17, pp. 4537-4543, 2007.
[5] S. Heidari, E. Afshari, Comparison between different models of polymer membrane fuel cell using a metal foam as a flow distributor, Modares Mechanical Engineering, Vol. 15, No. 3, pp. 333-343, 2015. (in Persianفارسی )
[6] H. Tawfik, Y. Hung, D. Mahajan, Metal bipolar plates for PEM fuel cell—a review, Journal of Power Sources, Vol. 163, No. 2, pp. 755-767, 2007.
[7] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, Vol. 30, No. 12, pp. 1297-1302, 2005.
[8] D. P’ng, P. Molian, Q-switch Nd: YAG laser welding of AISI 304 stainless steel foils, Materials Science and Engineering: A, Vol. 486, No. 1, pp. 680-685, 2008.
[9] V. A. Ventrella, J. R. Berretta, W. De Rossi, Pulsed Nd: YAG laser seam welding of AISI 316L stainless steel thin foils, Journal of Materials Processing Technology, Vol. 210, No. 14, pp. 1838-1843, 2010.
[10] M. Moradi, M. Ghoreishi, Influences of laser welding parameters on the geometric profile of Ni-base superalloy Rene 80 weld-bead, The International Journal of Advanced Manufacturing Technology, Vol. 55, No. 1-4, pp. 205-215, 2011.
[11] A. H. Faraji, M. Goodarzi, S. H. Seyedein, C. Maletta, Investigation of the capability of hybrid Nd: YAG - TIG welding against Nd: YAG laser welding process for aluminum foam sandwich panels, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 349-356, 2016. (in Persianفارسی )
[12] F. Liang, H. Chendong, Z. Yansong, H. Wei, P. Linfa, Laser weld-bonding method of bipolar plate of fuel cell, CN Patent No. 102581487 A, 2012.
[13] V. A. Ventrella, Pulsed Nd: YAG laser applied in microwelding, Dan C. Dumitras (Eds.), Nd YAG Laser, pp. 255-278, China: In Tech publisher, 2012.
[14] V. A. Ventrella, J. R. Berretta, W. de Rossi, Application of pulsed Nd: YAG laser in thin foil microwelding, International Journal of Materials and Product Technology, Vol. 48, No. 1-4, pp. 194-204, 2014.
[15] K. Benyounis, A.-G. Olabi, M. Hashmi, Multi-response optimization of CO2 laser-welding process of austenitic stainless steel, Optics & Laser Technology, Vol. 40, No. 1, pp. 76-87, 2008.
[16] T. Nguyen, D. Weckman, D. Johnson, H. Kerr, High speed fusion weld bead defects, Science and Technology of Welding & Joining, Vol. 11, No. 6, pp. 618-633, 2006.
[17] I. Eriksson, J. Powell, A. Kaplan, Measurements of fluid flow inside laser welding keyholes, Science and Technology of Welding & Joining, Vol. 16, pp. 636-41, 2011.
[18] Z. Lu, P. Huang, S. Chen, Y. Li, Mechanism of undercut in high speed welding based on moveless TIG welding, Transactions of Joining and Welding Research Institute, Vol. 39, pp. 197-198, 2010.
[19] C. E. Albright, S. Chiang, High-speed laser welding discontinuities, Journal of Laser Applications, Vol. 1, No. 1, pp. 18-24, 1988.
[20] J. Karlsson, P. Norman, A. F. Kaplan, P. Rubin, J. Lamas, A. Yanez, Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding, Applied Surface Science, Vol. 257, No. 17, pp. 7501-7506, 2011.
[21] P. F. Huang, C. Tang, Z. Y. Lu, Fundamental research on the mechanism of high-speed welding undercut, Advanced Materials Research,Vol. 287-290, pp. 2152-2155, 2011.
[22] J. Zhu, L. Li, Z. Liu, CO2 and diode laser welding of AZ31 magnesium alloy, Applied Surface Science, Vol. 247, No. 1, pp. 300-306, 2005.
[23] J. Karlsson, C. Markmann, M. M. Alam, A. F. Kaplan, Parameter influence on the laser weld geometry documented by the matrix flow chart, Physics Procedia, Vol. 5, pp. 183-192, 2010.
[24] X. Cao, M. Jahazi, Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd: YAG laser, Optics and Lasers in Engineering, Vol. 47, No. 11, pp. 1231-1241, 2009.
[25] D. C. Montgomery, Design and Analysis of Experiments, Eighth Edition, pp. 478-544, New York: Wiley, 2013.
[26] A. Olabi, K. Benyounis, M. Hashmi, Application of response surface methodology in describing the residual stress distribution in CO2 laser welding of AISI304, Strain, Vol. 43, No. 1, pp. 37-46, 2007.
[27] A. Ruggiero, L. Tricarico, A. Olabi, K. Benyounis, Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI 316, Optics and Laser Technology, Vol. 43, No. 1, pp. 82-90, 2011.
[28] M. Moradi, E. Golchin, Investigation on the effects of process parameters on laser percussion drilling using finite element methodology, statistical modelling and optimization, Latin American Journal of Solids and Structures, Vol. 14, No. 3, pp. 464-484, 2017.
[29] S. M. Kowalski, D. C. Montgomery, Design and Analysis of Experiments, Minitab Companion, 7th Edition, pp. 76-88, New York: John Wiley & Sons, 2012.
[30] A.-M. El-Batahgy, Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels, Materials Letters, Vol. 32, No. 2, pp. 155-163, 1997.
[31] A. Paul, T. DebRoy, Free surface flow and heat transfer in conduction mode laser welding, Metallurgical Transactions B, Vol. 19, No. 6, pp. 851-858, 1988.
[32] X. He, Heat transfer, fluid flow and mass transfer in laser welding of stainless steelwith small length scale, PhD Thesis, Department of Materials Science and Engineering, The Pennsylvania State University, 2006.