مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل پارامترهای فرایند جوشکاری لیزر فویل فولاد زنگ‌نزن توسط روش آماری رویه پاسخ به‌منظور اتصال صفحات دوقطبی پیل‌سوختی پلیمری

نویسندگان
1 پژوهشگاه فضایی ایران
2 دانشگاه صنعتی اصفهان
چکیده
در تحقیق حاضر، تاثیر پارامترهای جوشکاری لیزر پالسی Nd:YAG بدون فلز پرکننده بر روی اتصال لبه‌روی‌هم فویل فولاد زنگ‌نزن 316L با ضخامت 100 میکرومتر جهت کاربرد در صفحات دوقطبی پیل‌سوختی پلیمری مورد بررسی قرار گرفت. بدین‌‌منظور از ابزارهای آماری، آنالیز واریانس و نمودارهای مختلف جهت تحلیل داده‌ها توسط روش رویه پاسخ استفاده گردید. پارامترهای ورودی توان قله (130 تا 650 وات)، زمان روشنی پالس (1.5 تا 3.5 میلی‌ثانیه) و فرکانس جوشکاری (14 تا 18 هرتز) در نظر گرفته شد. روش آماری مذکور به‌خوبی توانست، با توسعه چندجمله‌ای درجهٴ دوم، تأثیر پارامترهای جوشکاری را پیش‌بینی نماید؛ به‌طوری‌که مجموع خطا شامل خطای تکرارپذیری و خطای عدم تطابق برای مدل استحکام برشی، مدل بریدگی کنار جوش و مدل پرنشدگی جوش به‌ترتیب 2، 8 و 3 به دست آمد. مهم‌ترین عوامل مؤثر بر استحکام برشی، عیوب بریدگی کنار جوش و نفوذ ناقص تشخیص داده شد. توان لیزر اصلی‌ترین پارامتر در این فرآیند برآورد گردید و اثر آن بر استحکام برشی جوش، بریدگی کنار جوش و پرنشدگی جوش به‌ترتیب 64، 62 و 66 درصد محاسبه شد. در نهایت حداکثر استحکام برشی به‌ میزان 522 مگاپاسکال در توان قله 260 وات، زمان روشنی پالس 3 میلی‌ثانیه و فرکانس 17 هرتز به‌دست آمد. در این‌حالت بریدگی کنار جوش به 3 میکرومتر رسید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analysis of the laser welding parameters of stainless steel foil by statistical response surface methodology for joining PEMFC bipolar plates

نویسندگان English

Mohammad Reza Pakmanesh 1
Morteza Shamanian 2
Saeid Asghari 1
1 Institute of Materials and Energy, Iranian Space Research Center, Isfahan, Iran
2 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده English

In the present study, the effect of parameters of autogenous pulsed Nd: YAG laser welding process on the lap joint of a 316L stainless steel foil with a thickness of 100 µm to be used as bipolar plates of polymeric fuel cell was investigated. For this purpose, the statistical tools, the analysis of variance and the various diagrams were used to analyze the data by response surface methodology. The peak power (130 to 650 W), pulse durability (1.5 to 3.5 ms), and welding frequency (14 to 18 Hz) were considered as input parameters. The mentioned statistical method was able to predict the effect of welding parameters by developing second-order polynomials, so that the total error including the repeatability error and the lack of fit error for shear strength model, weld undercut model, and weld underfill model obtained 2, 8 and 3, respectively. The defects of weld undercut and lack of penetration were identified as most important factors affecting the shear strength. The laser power is as the main parameter in this process and the impact of it on the shear strength of the weld, the weld undercut and the weld underfill is calculated 64, 62 and 66%, respectively. Finally, the maximum shear strength with the value of 522 MPa is achieved at a peak power of 260 W, pulsed duration of 3 ms and welding frequency of 17 Hz. In this case, the weld undercut is determined as 3 micrometers.

کلیدواژه‌ها English

Pulsed laser welding
response surface methodology
Weld defects
Shear Strength
PEMFC bipolar plates
[1] G. Hoogers, Fuel Cell Technology Handbook, pp. 3-5, New York: CRC press, 2014.
[2] C. Rayment, S. Sherwin, Introduction to Fuel Cell Technology, pp. 11-12, Notre Dame: University of Notre Dame, 2003.
[3] H. Tsuchiya, O. Kobayashi, Mass production cost of PEM fuel cell by learning curve, International Journal of Hydrogen Energy, Vol. 29, No. 10, pp. 985-990, 2004.
[4] S. Dhakate, R. Mathur, B. Kakati, T. Dhami, Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell, International Journal of Hydrogen Energy, Vol. 32, No. 17, pp. 4537-4543, 2007.
[5] S. Heidari, E. Afshari, Comparison between different models of polymer membrane fuel cell using a metal foam as a flow distributor, Modares Mechanical Engineering, Vol. 15, No. 3, pp. 333-343, 2015. (in Persianفارسی )
[6] H. Tawfik, Y. Hung, D. Mahajan, Metal bipolar plates for PEM fuel cell—a review, Journal of Power Sources, Vol. 163, No. 2, pp. 755-767, 2007.
[7] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, Vol. 30, No. 12, pp. 1297-1302, 2005.
[8] D. P’ng, P. Molian, Q-switch Nd: YAG laser welding of AISI 304 stainless steel foils, Materials Science and Engineering: A, Vol. 486, No. 1, pp. 680-685, 2008.
[9] V. A. Ventrella, J. R. Berretta, W. De Rossi, Pulsed Nd: YAG laser seam welding of AISI 316L stainless steel thin foils, Journal of Materials Processing Technology, Vol. 210, No. 14, pp. 1838-1843, 2010.
[10] M. Moradi, M. Ghoreishi, Influences of laser welding parameters on the geometric profile of Ni-base superalloy Rene 80 weld-bead, The International Journal of Advanced Manufacturing Technology, Vol. 55, No. 1-4, pp. 205-215, 2011.
[11] A. H. Faraji, M. Goodarzi, S. H. Seyedein, C. Maletta, Investigation of the capability of hybrid Nd: YAG - TIG welding against Nd: YAG laser welding process for aluminum foam sandwich panels, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 349-356, 2016. (in Persianفارسی )
[12] F. Liang, H. Chendong, Z. Yansong, H. Wei, P. Linfa, Laser weld-bonding method of bipolar plate of fuel cell, CN Patent No. 102581487 A, 2012.
[13] V. A. Ventrella, Pulsed Nd: YAG laser applied in microwelding, Dan C. Dumitras (Eds.), Nd YAG Laser, pp. 255-278, China: In Tech publisher, 2012.
[14] V. A. Ventrella, J. R. Berretta, W. de Rossi, Application of pulsed Nd: YAG laser in thin foil microwelding, International Journal of Materials and Product Technology, Vol. 48, No. 1-4, pp. 194-204, 2014.
[15] K. Benyounis, A.-G. Olabi, M. Hashmi, Multi-response optimization of CO2 laser-welding process of austenitic stainless steel, Optics & Laser Technology, Vol. 40, No. 1, pp. 76-87, 2008.
[16] T. Nguyen, D. Weckman, D. Johnson, H. Kerr, High speed fusion weld bead defects, Science and Technology of Welding & Joining, Vol. 11, No. 6, pp. 618-633, 2006.
[17] I. Eriksson, J. Powell, A. Kaplan, Measurements of fluid flow inside laser welding keyholes, Science and Technology of Welding & Joining, Vol. 16, pp. 636-41, 2011.
[18] Z. Lu, P. Huang, S. Chen, Y. Li, Mechanism of undercut in high speed welding based on moveless TIG welding, Transactions of Joining and Welding Research Institute, Vol. 39, pp. 197-198, 2010.
[19] C. E. Albright, S. Chiang, High-speed laser welding discontinuities, Journal of Laser Applications, Vol. 1, No. 1, pp. 18-24, 1988.
[20] J. Karlsson, P. Norman, A. F. Kaplan, P. Rubin, J. Lamas, A. Yanez, Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding, Applied Surface Science, Vol. 257, No. 17, pp. 7501-7506, 2011.
[21] P. F. Huang, C. Tang, Z. Y. Lu, Fundamental research on the mechanism of high-speed welding undercut, Advanced Materials Research,Vol. 287-290, pp. 2152-2155, 2011.
[22] J. Zhu, L. Li, Z. Liu, CO2 and diode laser welding of AZ31 magnesium alloy, Applied Surface Science, Vol. 247, No. 1, pp. 300-306, 2005.
[23] J. Karlsson, C. Markmann, M. M. Alam, A. F. Kaplan, Parameter influence on the laser weld geometry documented by the matrix flow chart, Physics Procedia, Vol. 5, pp. 183-192, 2010.
[24] X. Cao, M. Jahazi, Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd: YAG laser, Optics and Lasers in Engineering, Vol. 47, No. 11, pp. 1231-1241, 2009.
[25] D. C. Montgomery, Design and Analysis of Experiments, Eighth Edition, pp. 478-544, New York: Wiley, 2013.
[26] A. Olabi, K. Benyounis, M. Hashmi, Application of response surface methodology in describing the residual stress distribution in CO2 laser welding of AISI304, Strain, Vol. 43, No. 1, pp. 37-46, 2007.
[27] A. Ruggiero, L. Tricarico, A. Olabi, K. Benyounis, Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI 316, Optics and Laser Technology, Vol. 43, No. 1, pp. 82-90, 2011.
[28] M. Moradi, E. Golchin, Investigation on the effects of process parameters on laser percussion drilling using finite element methodology, statistical modelling and optimization, Latin American Journal of Solids and Structures, Vol. 14, No. 3, pp. 464-484, 2017.
[29] S. M. Kowalski, D. C. Montgomery, Design and Analysis of Experiments, Minitab Companion, 7th Edition, pp. 76-88, New York: John Wiley & Sons, 2012.
[30] A.-M. El-Batahgy, Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels, Materials Letters, Vol. 32, No. 2, pp. 155-163, 1997.
[31] A. Paul, T. DebRoy, Free surface flow and heat transfer in conduction mode laser welding, Metallurgical Transactions B, Vol. 19, No. 6, pp. 851-858, 1988.
[32] X. He, Heat transfer, fluid flow and mass transfer in laser welding of stainless steelwith small length scale, PhD Thesis, Department of Materials Science and Engineering, The Pennsylvania State University, 2006.