مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تأثیر چشمه های حرارتی مغناطیسی بر آسیب بافت سرطانی

نویسندگان
1 دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
2 دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
در این پژوهش، بررسی عددی اثر چشمه های حرارتی مغناطیسی (باقیمانده و پسماند) که در گرمادرمانی می توانند مفید باشند و اثر آن ها بر بافت سرطانی بررسی شده است. معادلات حاکم پیوستگی، مومنتوم، غلظت، انرژی و معادله تخریب بافت آرنیوس به صورت کوپل شده در نرم افزار عددی کامسول تعریف، حل و مورد بررسی واقع شده اند. برای جریان خون درون مویرگ سرطانی از لزجت غیرنیوتنی و وابسته به دما استفاده شده است. مدل هندسی به صورت سه بعدی شامل مویرگ و بافت سرطانی شبیه سازی شده است. خواص ترموفیزیکی خون و بافت نیز وابسته به دما تعریف شده اند. نتایج حاکی از آن بود که که چشمه حرارتی باقیمانده نقش اصلی در افزایش دمای خون و بافت را دارد و می توان از اثر گرمای پسماند چشم پوشی کرد. چشمه حرارتی باقیمانده با اندازه ذرات رابطه عکس دارد و در ابعاد بالای 100 نانومتر بی اثر می شود ولی چشمه حرارتی پسماند با اندازه نانوذرات مغناطیسی رابطه مستقیم دارد و برای ذرات با اندازه 150 نانومتری، 1 درجه افزایش دما را برای بافت در پی خواهد داشت. افزایش دما خون برای نانوذرات مغناطیسی با اندازه 25 نامتری با چشمه حرارتی باقیمانده بیشترین تخریب را در بافت سرطانی به وجود می‌آورند. همچنین ویسکوزیته خون با غلظت نانوذرات مغناطیسی در دیواره مویرگ و دمای خون رابطه عکس دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Influece of Magnetic Heat Sources on Damage of Cancerous Tissue

نویسندگان English

mahdi keyhanpour 1
majid ghasemi 2
1 faculty of mechanical engineering, K. N. Toosi university of technology, tehran, iran
2 faculty of mechanical engineering, K. N. Toosi university of technology, tehran, iran
چکیده English

In this study, numerically investigated effect of magnetic heat sources (residual and hysteresis) that can be useful in hyperthermia and their effects on cancerous tissue. The governing equations of continuty, momentum, concentration, energy and Arrhenius tissue destruction equation in the form of couplings are defined, solved and investigated in the finite-element COMSOL software. For blood flow inside the cancerous capillary, non-newtonian and temperature dependent model is used. The geometric model is simulated in three dimensions, including the capillary and cancerous tissue. Thermophysical properties of blood and tissue are also temperature dependent. Results indicated that the residual heat source plays a major role in increasing the temperature of the blood and tissue and can be ignored the effect of hysteresis heat source. The residual heat source has an inverse relation to the particle size and is ineffective in the particle size above 100 nm but hysteresis heat source is directly related to the size of the nanoparticles, and for particles with a size of 150 nm, it will result in a 1 degree increase in temperature for the tissue. The increase in blood temperature for 25 nm magnetic nanoparticles with the residual heat source can lead to the most destruction in cancerous tissue. Also, the viscosity of blood has an inverse relation with the concentration of magnetic nanoparticles in the capillary wall and blood temperature.

کلیدواژه‌ها English

Heat Sources
Residual
Hysteresis
Arrhenius
Magnetic nanoparticles
[1] A. J. Giustini, A. A. Petryk, S. M. Cassim, J. A. Tate, I. Baker, and P. J. Hoopes, "Magnetic nanoparticle hyperthermia in cancer treatment," Nano Life, vol. 1, no. 01n02, pp. 17-32, 2010.
[2] S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, "Magnetic nanoparticle design for medical diagnosis and therapy," Journal of Materials Chemistry, vol. 14, no. 14, pp. 2161-2175, 2004.
[3] S. M. A. Ne’mati, M. Ghassemi, and A. Shahidian, "Numerical Investigation of Drug Delivery to Cancerous Solid Tumors by Magnetic Nanoparticles Using External Magnet," Transport in Porous Media, vol. 119, no. 2, pp. 461-480, 2017.
[4] M. R. Habibi, M. Ghassemi, and A. Shahidian, "Investigation of Biomagnetic Fluid Flow Under Nonuniform Magnetic Fields," Nanoscale and Microscale Thermophysical Engineering, vol. 16, no. 1, pp. 64-77, 2012.
[5] A. Nacev, C. Beni, O. Bruno, and B. Shapiro, "The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields," Journal of magnetism and magnetic materials, vol. 323, no. 6, pp. 651-668, 2011.
[6] A. E. Deatsch and B. A. Evans, "Heating efficiency in magnetic nanoparticle hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 354, pp. 163-172, 2014.
[7] J. Wang, "Simulation of Magnetic Nanoparticle Hyperthermia in Prostate Tumors," 2014.
[8] T. Y. Moon, "brainNek: Modeling Laser-Induced Thermal Therapy for Brain Cancer with Spectral Elements on GPUs," Rice University, 2014.
[9] M. Johannsen, B. Thiesen, P. Wust, and A. Jordan, "Magnetic nanoparticle hyperthermia for prostate cancer," International Journal of Hyperthermia, vol. 26, no. 8, pp. 790-795, 2010.
[10] S. Ne’mati, M. Ghassemi, and A. Shahidian, "Numerical investigation of non-uniform magnetic field effects on the blood velocity and magnetic nanoparticles concentration inside the vessel," Journal of Mechanical Science and Technology, vol. 31, no. 4, pp. 1657-1663, 2017.
[11] D. M. Eckmann, S. Bowers, M. Stecker, and A. T. Cheung, "Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity," Anesthesia & Analgesia, vol. 91, no. 3, pp. 539-545, 2000.
[12] S. Chien, "Shear dependence of effective cell volume as a determinant of blood viscosity," Science, vol. 168, no. 3934, pp. 977-979, 1970.
[13] J. Berthier and P. Silberzan, Microfluidics for biotechnology. Artech House, 2010.
[14] R. W Fox and A. T Mcdonald, Introduction to Flud Mechanics. John Wiley & Sons, Inc., 2004.
[15] M. R. Habibi, M. Ghassemi, and M. H. Hamedi, "Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream," Journal of Magnetism and Magnetic Materials, vol. 324, no. 8, pp. 1473-1482, 2012.
[16] R. E. Treybal, "Mass transfer operations," New York, 1980.
[17] A. Senyei, K. Widder, and G. Czerlinski, "Magnetic guidance of drug‐carrying microspheres," Journal of Applied Physics, vol. 49, no. 6, pp. 3578-3583, 1978.
[18] T. L. Bergman and F. P. Incropera, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[19] S. Dutz and R. Hergt, "Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy," International Journal of Hyperthermia, vol. 29, no. 8, pp. 790-800, 2013.
[20] R. E. Rosensweig, "Heating magnetic fluid with alternating magnetic field," Journal of magnetism and magnetic materials, vol. 252, pp. 370-374, 2002.
[21] D. K. Rajan and J. Lekkala, "Coercivity weighted Langevin magnetisation; A new approach to interpret superparamagnetic and nonsuperparamagnetic behaviour in single domain magnetic nanoparticles," arXiv preprint arXiv:1308.2517, 2013.
[22] Y.-w. Jun, J.-w. Seo, and J. Cheon, "Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences," Accounts of chemical research, vol. 41, no. 2, pp. 179-189, 2008.
[23] C. Rossmann and D. Haemmerich, "Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures," Critical Reviews™ in Biomedical Engineering, vol. 42, no. 6, 2014.
[24] A. Shahidian, S. M. A. Nemati, M. Ghasemi, Numerical investigation of magnetic nanoparticles absorption in healthy and cancerous tissue under the influence of non-uniform magneticfield, Modares Mechanical Engineering, Vol. 15, No. 12, pp. 168-174, 2015 (in Persian)
[25] V. Loukopoulos and E. Tzirtzilakis, "Biomagnetic channel flow in spatially varying magnetic field," International Journal of Engineering Science, vol. 42, no. 5-6, pp. 571-590, 2004.
[26] V. M. Brambatti, C. R. de Andrade, and E. L. Zaparoli, "NUMERICAL ANALYSIS OF BLOOD FLOW VISCOSITY MODELS," Momentum, vol. 10, p. 1, 2009.