[1] D. S. Bale, R. J. LeVeque, S. Mitran, J. A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions, Journal on Scientific Computing, Vol. 24, No. 3, pp. 955-978, 2003.
[2] B. Camenen, M. Larson, A general formula for non-cohesive bed load sediment transport, Journal of Estuarine, Coastal and Shelf Science, Vol. 63, No. 1-2, pp. 249-260, 2005.
[3] Z. Cao, R. Day, S. Egashira, Coupled and Decoupled Numerical Modeling of Flow and Morphological Evolution in Alluvial Rivers, Journal of Hydraulic Engineering, Vol. 128, No. 3, pp. 306-321, 2002.
[4] S. Saiedi, coupled modeling of alluvial flows, Journal of Hydraulic Engineering, Vol. 123, pp. 440-446, 1997.
[5] M. J. Castro Díaz, E. D. Fernández-Nieto, A. M. Ferreiro, Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods, Journal of Computers & Fluids, Vol. 37, No. 3, pp. 299-316, 2008.
[6] J. Hudson, P. K. Sweby, A high-resolution scheme for the equations governing 2D bed-load sediment transport, Journal of Numerical Methods in Fluids, Vol. 47, No. 10-11, pp. 1085-1091, 2005.
[7] F. Benkhaldoun, M. Seaïd, Combined characteristics and finite volume methods for sediment transport and bed morphology in surface water flows, Journal of Mathematics and Computers in Simulation, Vol. 81, No. 10, pp. 2073-2086, 2011.
[8] A. Canestrelli, M. Dumbser, A. Siviglia, E. F. Toro, Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed, Journal of Advances in Water Resources, Vol. 33, No. 3, pp. 291-303, 2010.
[9] S. Cordier, M. H. Le, T. Morales de Luna, Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help, Journal of Advances in Water Resources, Vol. 34, No. 8, pp. 980-989, 2011.
[10] M. J. Castro Dı´az, E. D. Fernández-Nieto, A. M. Ferreiro, C. Parés, Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes, Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 33–3, pp. 2520-2538, 2009.
[11] J. Hudson, Numerical Techniques for Morphodynamic Modelling, Thesis, PhD Thesis, Department of Mathematics, University of Reading, Reading, 2001.
[12] J. Murillo, P. García-Navarro, An Exner-based coupled model for two-dimensional transient flow over erodible bed, Journal of Computational Physics, Vol. 229, No. 23, pp. 8704-8732, 2010.
[13] A. Zia, M. A. Banihashemi, Simple efficient algorithm (SEA) for shallow flows with shock wave on dry and irregular beds, International journal for numerical methods in fluids, Vol. 56, No. 11, pp. 2021-2043, 2008.
[14] A. Harten, P. D. Lax, B. van Leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, pp. 53-79, Berlin, Springer Berlin Heidelberg, 1997.
[15] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, pp.107-125, Berlin, Springer Berlin Heidelberg, 2009.
[16] E. F. Toro, Shock-capturing methods for free-surface shallow flows, pp.157-209, Michigan, John Wiley, 2001.
[17] L. Fraccarollo, E. F. Toro, Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems, Journal of Hydraulic Research, Vol. 33, No. 6, pp. 843-864, 1995.
[18] K. S. Erduran, V. Kutija, C. J. M. Hewett, Performance of finite volume solutions to the shallow water equations with shock-capturing schemes, International Journal for Numerical Methods in Fluids, Vol. 40, No. 10, pp. 1237-1273, 2002.
[19] K. Anastasiou, C. T. Chan, Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, International Journal for Numerical Methods in Fluids, Vol. 24, No. 11, pp. 1225-1245, 1997.
[20] A. Valiani, V. Caleffi, A. Zanni, Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method, Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 460-472, 2002.
[21] M. Barzgaran, H. Mahdizadeh, S. Pouresmaeil, A weakly coupled scheme for modelling bedload sediment transport using an augmented Riemann solver, Modares Mechanical Engineering, Vol. 17, No. 9, pp. 409-416, 2017. (in Persianفارسی )
[22] J. Hudson, Numerical Techniques for Morphodynamic Modelling, Thesis, PhD Thesis,Department of Mathematics,University of Reading, 2001.
[23] A. J. Grass, Sediment Transport by Waves and Currents, London, pp. 10,977-10,986, 1981.
[24] E. Meyer-Peter, R. Mueller, Formulas for Bed-Load Transport, Sweden, pp. 39–64, 1948.
[25] G. M. Smart, Sediment transport formula for steep channels, Journal of Hydraulic Engineering, Vol. 110, No. 3, pp. 267-276, 1984.
[26] R. J. LeVeque, balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave-propagation algorithm, Journal of Computational Physics, Vol. 146, No. 1, pp. 346-365, 1998.
[27] R. J. LeVeque, M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes, Journal of Computational Physics, Vol. 172, No. 2, pp. 572-591, 2001.
[28] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, pp. 333-335, Cambridge, Cambridge University Press, 2002.
[29] D. L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation, Journal of Computational Physics, Vol. 227, No. 6, pp. 3089-3113, 2008.
[30] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, Vol. 43, No. 2, pp. 357-372, 1981.
[31] B. Spinewine, Y. Zech, Small-scale laboratory dam-break waves on movable beds, Journal of Hydraulic Research, Vol. 45, No. sup1, pp. 73-86, 2007.
[32] T. Tingsanchali, C. Chinnarasri, Numerical modelling of dam failure due to flow overtopping, Hydrological Sciences Journal, Vol. 46, No. 1, pp. 113-130, 2001.
[33] X. Liu, B. J. Landry, M. H. García, Two-dimensional scour simulations based on coupled model of shallow water equations and sediment transport on unstructured meshes, Coastal Engineering, Vol. 55, No. 10, pp. 800-810, 2008.