[1] R. S. Mosher, Handyman to Hardiman, SAE Technical Paper, No. 670088, 1967.
[2] E. Guizzo, H. Goldstein, The rise of the body bots [robotic exoskeletons], IEEE Spectrum, Vol. 42, No. 10, pp. 50-56, 2005.
[3] T. Hayashi, H. Kawamoto, Y. Sankai, Control method of robot suit HAL working as operator’s muscle using biological and dynamical information, Proceeding of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 3063-3068, 2005.
[4] A. B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 2, pp. 128-138, 2006.
[5] S. Jezernik, G. Colombo, T. Keller, H. Frueh, M. Morari, Robotic orthosis Lokomat: a rehabilitation and research tool, Neuromodulation: Technology at the Neural Interface, Vol. 6, No. 2, pp. 108-115, 2003.
[6] J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F. V. Asseldonk, H. van der Kooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, No. 3, pp. 379-386, 2007.
[7] S. K. Banala, S. H. Kim, S. K. Agrawal, J. P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 17, No. 1, pp. 2-8, 2009.
[8] A. Dashkhaneh, M. M. Moghaddam, M. R. Hadian, M. Mogharrabi, A. A. M. Saba, S. M. D. Hasankola, Rehabilitation robots control in gait training exercises on a treadmill, Modares Mechanical Engineering, Vol. 14, No. 8, pp. 157-164, 2014. (in Persianفارسی )
[9] A. Taherifar, M. R. Hadian, M. Mousavi, A. Rassaf, F. Ghiasi, LOKOIRAN- A novel robot for rehabilitation of spinal cord injury and stroke patients, Proceeding of the 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, pp. 218-223, 2013.
[10] A. Esquenazi, M. Talaty, A. Packel, M. Saulino, The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury, American Journal of Physical Medicine & Rehabilitation, Vol. 91, No. 11, pp. 911-921, 2012.
[11] H. Kazerooni, J. L. Racine, L. Huang, R. Steger, On the control of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4353-4360, 2005.
[12] S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Trans. Robot. Autom., Vol. 20, No. 3, pp. 574-582, 2004.
[13] M. M. Ataei, H. Salarieh, A. Alasty, Adaptive impedance control of exoskeleton robot, Modares Mechanical Engineering, Vol. 13, No. 7, pp. 111-126, 2013. (in Persianفارسی )
[14] F. M. Silva, J. A. T. Machado, Kinematic aspects of robotic biped locomotion systems, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, France, Vol. 1, pp. 266-272, 1997.
[15] W. Zijlstra, A. L. Hof, Displacement of the pelvis during human walking: experimental data and model predictions, Gait & Posture, Vol. 6, No. 3, pp. 249-262, 1997.
[16] J. Yoon, R. P. Kumar, A. Özer, An adaptive foot device for increased gait and postural stability in lower limb orthoses and exoskeletons, International Journal of Control, Automation and Systems, Vol. 9, No. 3, p. 515, 2011.
[17] R. Huang, H. Cheng, Y. Chen, Q. Chen, X. Lin, J. Qiu, Optimisation of reference gait trajectory of a lower limb exoskeleton, International Journal of Social Robotics, Vol. 8, No. 2, pp. 223-235, 2016.