مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل ارتعاشات غیرخطی آزاد و اجباری یک نانوتیر‌چرخان ویسکوالاستیک با درنظرگرفتن اثرات سطحی

نویسندگان
1 دانشجوی دکترا دانشگاه تربیت دبیر شهید رجایی تهران
2 استادیار/ دانشگاه تربیت دبیر شهید رجایی
3 رئیس دانشکده مهندسی مکانیک دانشگاه شهید رجایی
4 دانشجوی کارشناسی ارشد دانشگاه تربیت دبیر شهید رجایی تهران
چکیده
در این پژوهش ارتعاشات غیرخطی آزاد و اجباری یک نانوتیر دوار ویسکوالاستیک با درنظرگرفتن اثرات سطحی مطالعه و بررسی شده است. به‌کمک اصل هامیلتون و تئوری گورتین مورداک معادلات حرکت استخراج شده و با روش گلرکین گسسته شده‌اند. سپس با روش مقیاس‌های زمانی چندگانه، معادلات حرکت حل شده‌اند. در تحلیل ارتعاشات آزاد، عباراتی تحلیلی برای دامنه، فاز و فرکانس طبیعی استخراج شده است. در تحلیل ارتعاشات اجباری، عباراتی تحلیلی برای پاسخ حالت ماندگار سیستم به‌دست آورده شده است. تاثیر عواملی مانند اثرات سطح، ضرایب میرایی، ابعاد سطح مقطع، دامنه‌ی تحریک خارجی و ... بر پاسخ فرکانسی سیستم مطالعه شده است. مشاهده می‌شود که در ارتعاشات آزاد در یک زمان خاص با افزایش تنش سطح، دامنه کاهش می‌یابد و با افزایش چگالی سطح و الاستیسیته‌ی سطح، دامنه افزایش خواهد یافت. همچنین افزایش ضرایب میرایی داخلی و خارجی، باعث کاهش دامنه‌ی آزاد سیستم می‌شوند. در ارتعاشات اجباری مشاهده می‌شود با درنظرگرفتن اثرات سطح، دامنه‌ی اجباری سیستم کاهش می‌یابد و محل نقطه‌ی انشعاب اول نیز تغییر خواهد کرد. افزایش ضرایب میرایی داخلی و خارجی باعث کاهش دامنه شده و انشعاب اول در فرکانس‌هایی نزدیک‌تر به فرکانس طبیعی اتفاق خواهد افتاد. همچنین مشاهده می‌شود که برای دو ابعاد مختلف از سطح ولی با مساحت سطح یکسان، محل نقاط انشعاب و دامنه تغییر خواهند کرد. افزایش دامنه‌ی تحریک خارجی باعث افزایش دامنه می‌شود و نقاط انشعابی اول و دوم در فرکانس‌هایی دورتر از فرکانس طبیعی اتفاق خواهند افتاد. بنابراین در نظر گرفتن اثرات سطح در تحلیل ارتعاشات غیرخطی آزاد و اجباری نانوتیرهای دوار اهمیت دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Free and forced nonlinear vibrations analysis of a viscoelastic nano rotating beam by considering the surface effects

نویسندگان English

S. Ali Ghasabi 1
Majid Shahgholi 2
Gholamhasan Payghaneh 3
Mohammadali Ahmadi 4
3 Head Of faculty Of Mechanical Engineering
چکیده English

In this paper free and forced vibrations analysis of a viscoelastic nonlinear nano rotating beam by considering surface effects is investigated. Using Hamilton principle and Gurtin Murdoch theory, the equations of motion are obtained and discretized by Galerkin method. Using the multiple time scales method the equations of motion are solved. In free vibrations analysis, the analytical expressions for amplitude and phase are obtained. In forced vibrations analysis the steady state solution are obtained. The effect of surface effect, damping coefficients, dimensions of cross section area, external excitation amplitude etc. on frequency response curves are investigated. It is seen that in free vibrations, by increasing surface stress the amplitude of the system decreased, and by increasing surface density or elasticity it is increased. Also, by increasing internal and external damping coefficients free vibration amplitude is decreased. In forced vibrations, it is seen that considering surface effect the amplitude of the system is decreased and the first bifurcation point is obviously changed. By increasing internal and external damping coefficients the amplitude is decreased and the first bifurcation point occur in frequencies near the natural frequency. It is seen that for two different dimensions of cross section with same area, amplitude and the loci of the bifurcation points are changed. By increasing the amplitude of external excitation the amplitude of response is increased the bifurcation points occur in frequencies far away from natural frequency. So, considering the surface effects for free and forced vibrations analysis of the nano rotating beams is mandatory.

کلیدواژه‌ها English

Nonlinear vibrations
free and forced vibrations
nano rotating beam
Viscoelastic
surface effects
[1] S. N. Mahmoodi, S. E. Khadem, and M. Kokabi, "Non-linear free vibrations of Kelvin–Voigt visco-elastic beams," International Journal of Mechanical Sciences, vol. 49, pp. 722-732, 6// 2007.
[2] S. N. Mahmoodi, N. Jalili, and S. E. Khadem, "An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams," Journal of Sound and Vibration, vol. 311, pp. 1409-1419, 4/8/ 2008.
[3] S. M. Hosseini, H. Kalhori, A. Shooshtari, and S. N. Mahmoodi, "Analytical solution for nonlinear forced response of a viscoelastic piezoelectric cantilever beam resting on a nonlinear elastic foundation to an external harmonic excitation," Composites Part B: Engineering, vol. 67, pp. 464-471, 12// 2014.
[4] D. Younesian and E. Esmailzadeh, "Non-linear vibration of variable speed rotating viscoelastic beams," Nonlinear Dynamics, vol. 60, pp. 193-205, 2010.
[5] A. Mohebshahedin and A. Farrokhabadi, "The influence of the surface energy on the instability behavior of NEMS structures in presence of intermolecular attractions," International Journal of Mechanical Sciences, vol. 101–102, pp. 437-448, 10// 2015.
[6] S. Hosseini-Hashemi, R. Nazemnezhad, and H. Rokni, "Nonlocal nonlinear free vibration of nanobeams with surface effects," European Journal of Mechanics - A/Solids, vol. 52, pp. 44-53, 7// 2015.
[7] S. Hosseini-Hashemi and R. Nazemnezhad, "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects," Composites Part B: Engineering, vol. 52, pp. 199-206, 9// 2013.
[8] S. Hosseini-Hashemi, M. Fakher, and R. Nazemnezhad, "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko," Journal of Solid Mechanics, vol. 5, pp. 290-304, 2013.
[9] S. M. Pourkiaee, S. E. Khadem, and M. Shahgholi, "Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions," Journal of Vibration and Control, vol. 0, p. 1077546315603270.
[10] R. Ansari, V. Mohammadi, M. Faghih Shojaei, R. Gholami, and H. Rouhi, "Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory," European Journal of Mechanics - A/Solids, vol. 45, pp. 143-152, 5// 2014.
[11] M. Safarabadi, M. Mohammadi, A. Farajpour, and M. Goodarzi, "Effect of Surface Energy on the Vibration Analysis of Rotating Nanobeam," Journal of Solid Mechanics, vol. 7, pp. 299-311, 2015.
[12] M. Ghadiri and N. Shafiei, "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method," Microsystem Technologies, vol. 22, pp. 2853-2867, 2016.
[13] M. Ghadiri, N. Shafiei, and H. Safarpour, "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity," Microsystem Technologies, vol. 23, pp. 1045-1065, 2017.
[14] M. Ghadiri and N. Shafiei, "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method," Journal of Vibration and Control, vol. 0, p. 1077546315627723.
[15] J. Aranda-Ruiz, J. Loya, and J. Fernández-Sáez, "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory," Composite Structures, vol. 94, pp. 2990-3001, 9// 2012.
[16] A. H. Nayfeh, Pai, P.F, Linear and Nonlinear Structural Mechanics. New York: Wiley- Interscience, 2004.
[17] L. Meirovitch, Analytical methods in vibrations. New York: Macmillan, 1967.
[18] M. Shahgholi and S. E. Khadem, "Hopf bifurcation analysis of asymmetrical rotating shafts," Nonlinear Dynamics, vol. 77, pp. 1141-1155, 2014.
[19] C. Q. Ru, "Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions," Science China Physics, Mechanics and Astronomy, vol. 53, pp. 536-544, 2010.
[20] M. E. Gurtin and A. I. Murdoch, "Surface stress in solids," International Journal of Solids and Structures, vol. 14, pp. 431-440, 1978.
[21] A. H. Nayfeh, Introduction to Perturbation Methods. New York: Wiley-Interscience, 1981.