مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عملکرد سیستم ترکیبی تولید همزمان توربین گازی با راکتور مدولار هلیوم، سیکل کالینا و سیکل تبرید جذبی از منظر انرژی و اگزرژی-اقتصادی

نویسندگان
1 دانشجوی دکتری، گروه مکانیک، واحد بندرانزلی، دانشگاه آزاد اسلامی، بندر انزلی، ایران
2 مهندسی مکانیک، دانشگاه آزاد اسلامی واحد لشت نشاء- ریباکنار، لشت نشاء، ایران
3 محقق در دانشگاه گیلان
4 استاد دانشکده مهندسی مکانیک، دانشگاه محقق اردبیلی و دانشگاه تبریز
چکیده
در سالهای اخیر استفاده از توربین گازی با راکتور مدولار هلیم (GT-MHR) که بر اساس چرخه برایتون بسته با سیال عامل هلیم کار می‌کند، به علت داشتن بازده زیاد، ایمنی بالای رآکتور، صرفه اقتصادی و هزینه تعمیر و نگهداری پایین، توجه محققان را به خود جلب کرده است. در تحقیق حاضر سیستم ترکیبی شامل سیکل توربین گازی با راکتور مدولار هلیوم، سیکل کالینا و سیکل جذبی آب-آمونیاک از منظر انرژی، اگزرژی و اگزرژی-اقتصادی مورد بررسی قرار گرفته است. استفاده از سیکل کالینا و سیکل جذبی به عنوان سیکل پایینی به منظور جلوگیری از هدر رفت انرژی اتلافی سیکل توربین گازی و افزایش بازده تبدیل انرژی می‌باشد. نتایج شبیه‌سازی حاکی از آن است که در حالت ورودی پایه کار کلی kW 304462 ، بازگشت ناپذیری کلی 289766 kW و بازده اگزرژی کلی سیکل تولید همزمان 0.689 می‌باشد. همچنین راکتور اتمی، توربین و کمپرسور سیکل هلیوم به عنوان اجزایی معرفی می‌شوند که باید بیشتر از سایر اجزا از منظر اگزرژی-اقتصادی مورد توجه قرار بگیرند چون بیشترین مقدار نرخ هزینه متعلق به این اجزا می‌باشد. در انتها نیز تحلیل پارامتری به منظور تاثیر تغییر نسبت فشار کمپرسور هلیومی، دمای ورودی توربین هلیومی، فشار و دمای ورودی توربین و کسر جرمی حالت پایه سیکل کالینا بر روی پارامترهای خروجی انجام می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Energy and Exergoeconomic analysis of combined cogeneration Gas Turbine-Modular Helium Reactor, Kalina cycle and absorption refrigeration cycle

نویسندگان English

reyhane rabiei 1
kaveh hanifi Miangafsheh 2
mohamad zoghi 3
morteza yari 4
1 Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad university , Bandar Anzali, Iran
2 Department of Mechanical Engineering, Lashtenesha-Zibakenar Branch, Islamic Azad University, Lashtenesha, Iran
3 Researcher in Guilan university
4 Department of Mechanical Engineering, Tabriz University, Tabriz, Iran
چکیده English

In recent years, the use of Gas Turbine-Modular Helium Reactor (GT-MHR) which operates in accordance with closed Brayton cycle with helium fluid as working fluid has attracted researchers’ attention because of its high efficiency, high reactor safety, being economical, and low maintenance costs. In the present study, a combined system, including GT-MHR cycle, Kalina cycle and Ammonia-water absorption cycle is investigated with respect to energy, exergy, and exergoeconomic. As the bottoming cycle, Kalina cycle and absorption cycle are used in order to avoid energy wasted by gas turbine cycle and to increase efficiency of energy conversion. The results of the simulated model show that, in the basic input mode, the overall work is 304462 kW, the overall exergy destruction is 289766kW and the overall exergy efficeincy of cogeneration cycle is 0.689kW. Also reactor, turbine and compressor in helium cycle are the component to which more attention should be paid with respect to exergoeconomic because the highest amount of cost rate is related to these components. At the end, parametric analysis is carried out in order to evaluate the effect of the changing pressure ratio of helium compressor, input temperature of helium compressor, input pressure and temperature of turbine and mass fraction of the base mode of the Kalina cycle on the output parameters.

کلیدواژه‌ها English

Combined Cogeneration Cycle
Gas Turbine-Modular Helium Reactor
Kalina cycle
Absorption refrigeration cycle
Exergoeconomic
[1] M. S. El-Genk, J.-M. Tournier, Noble gas binary mixtures for gas-cooled reactor power plants, Nuclear Engineering and Design, Vol. 238, No. 6, pp. 1353-1372, 2008.
[2] M. S. El-Genk, J.-M. Tournier, On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids, Energy Conversion and Management, Vol. 49, No. 7, pp. 1882-1891, 2008.
[3] S. Dardour, S. Nisan, F. Charbit, Utilisation of waste heat from GT–MHR and PBMR reactors for nuclear desalination, Desalination, Vol. 205, No. 1-3, pp. 254-268, 2007.
[4] D. Baldwin, M. Campbell, C. Ellis, M. Richards, A. Shenoy, MHR design, technology and applications, Energy Conversion and Management, Vol. 49, No. 7, pp. 1898-1901, 2008.
[5] V. Zare, S. Mahmoudi, M. Yari, Ammonia–water cogeneration cycle for utilizing waste heat from the GT-MHR plant, Applied thermal engineering, Vol. 48, pp. 176-185, 2012.
[6] V. Zare, S. Mahmoudi, A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor, Energy, Vol. 79, pp. 398-406, 2015.
[7] V. Zare, M. Yari, S. Mahmoudi, Proposal and analysis of a new combined cogeneration system based on the GT-MHR cycle, Desalination, Vol. 286, pp. 417-428, 2012.
[8] A. I. Kalina, Combined-cycle system with novel bottoming cycle, Journal of engineering for gas turbines and power, Vol. 106, No. 4, pp. 737-742, 1984.
[9] J. Wang, Z. Yan, M. Wang, Y. Dai, Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink, Energy, Vol. 50, pp. 513-522, 2013.
[10] M. Ashouri, A. M. K. Vandani, M. Mehrpooya, M. H. Ahmadi, A. Abdollahpour, Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector, Energy Conversion and Management, Vol. 105, pp. 1328-1339, 2015.
[11] C. E. C. Rodríguez, J. C. E. Palacio, O. J. Venturini, E. E. S. Lora, V. M. Cobas, D. M. dos Santos, F. R. L. Dotto, V. Gialluca, Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil, Applied Thermal Engineering, Vol. 52, No. 1, pp. 109-119, 2013.
[12] J. Wang, J. Wang, P. Zhao, Y. Dai, Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture, Energy Conversion and Management, Vol. 117, pp. 335-342, 2016.
[13] L. Cao, J. Wang, Y. Dai, Thermodynamic analysis of a biomass-fired Kalina cycle with regenerative heater, Energy, Vol. 77, pp. 760-770, 2014.
[14] H. M. Hettiarachchi, M. Golubovic, W. M. Worek, Y. Ikegami, The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources, Journal of Energy Resources Technology, Vol. 129, No. 3, pp. 243-247, 2007.
[15] J. Wang, Z. Yan, E. Zhou, Y. Dai, Parametric analysis and optimization of a Kalina cycle driven by solar energy, Applied thermal engineering, Vol. 50, No. 1, pp. 408-415, 2013.
[16] X. Li, Q. Zhang, X. Li, A Kalina cycle with ejector, Energy, Vol. 54, pp. 212-219, 2013.
[17] J. He, C. Liu, X. Xu, Y. Li, S. Wu, J. Xu, Performance research on modified KCS (Kalina cycle system) 11 without throttle valve, Energy, Vol. 64, pp. 389-397, 2014.
[18] R. A. Victor, J.-K. Kim, R. Smith, Composition optimisation of working fluids for organic Rankine cycles and Kalina cycles, Energy, Vol. 55, pp. 114-126, 2013.
[19] A. Allouhi, T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, Y. Zeraouli, Solar driven cooling systems: An updated review, Renewable and Sustainable Energy Reviews, Vol. 44, pp. 159-181, 2015.
[20] A. Ghafoor, A. Munir, Worldwide overview of solar thermal cooling technologies, Renewable and Sustainable Energy Reviews, Vol. 43, pp. 763-774, 2015.
[21] G. Florides, S. Kalogirou, S. Tassou, L. Wrobel, Design and construction of a LiBr–water absorption machine, Energy Conversion and Management, Vol. 44, No. 15, pp. 2483-2508, 2003.
[22] M. Yari, S. Mahmoudi, Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles, Applied Thermal Engineering, Vol. 30, No. 4, pp. 366-375, 2010.
[23] V. Zare, S. Mahmoudi, M. Yari, An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle, Energy, Vol. 61, pp. 397-409, 2013.
[24] F. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari, M. Rosen, Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles, Energy, Vol. 65, pp. 533-543, 2014.
[25] V. Zare, S. Mahmoudi, M. Yari, On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization, Energy Conversion and Management, Vol. 90, pp. 364-374, 2015.
[26] X. Wang, Y. Dai, An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO 2 cycles, Energy Conversion and Management, Vol. 126, pp. 561-572, 2016.
[27] J. Aman, D.-K. Ting, P. Henshaw, Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system, Applied Thermal Engineering, Vol. 62, No. 2, pp. 424-432, 2014.
[28] A. Bejan, G. Tsatsaronis, Thermal design and optimization: John Wiley & Sons, 1996.
[29] K. Bahlouli, R. K. Saray, N. Sarabchi, Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine, Energy, Vol. 86, pp. 672-684, 2015.
[30] B. H. Gebreslassie, G. Guillén-Gosálbez, L. Jiménez, D. Boer, Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment, Applied Energy, Vol. 86, No. 9, pp. 1712-1722, 2009.
[31] A. Lazzaretto, G. Tsatsaronis, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy, Vol. 31, No. 8, pp. 1257-1289, 2006.
[32] F. R. P. Arrieta, J. R. Sodré, M. D. M. Herrera, P. H. B. Zárante, Exergoeconomic analysis of an absorption refrigeration and natural gas-fueled diesel power generator cogeneration system, Journal of Natural Gas Science and Engineering, Vol. 36, pp. 155-164, 2016.