[1] S. Sridharan, Delamination Behaviour of Composites. New York, Woodhead Publishing, 2008.
[2] B. Harris, Fatigue in composites. New York, Woodhead Publishing, 2003.
[3] M. Beheshty, A. Rezadoust, Plastic reinforced(composites). Tehran, Iran Polymer and Petrochemical Institute, 2012.
[4] J. K. Kim, W. Yiu, C. Mai, Engineerend interfaces in fiber reinforced composites. New York, Elsevier B.V., 1998.
[5] C. Kassapoglou, Modeling the Effect of Damage in Composite Structures Simplified Approaches. United Kingendom, JohnWiley & Sons Ltd Registered, 2015.
[6] V. Dikshit, S. Bhudolia, S. Joshi, Multiscale Polymer Composites: A Review of the Interlaminar Fracture Toughness Improvement, Fibers, vol. 5, no. 4, p. 38, Oct. 2017.
[7] J. W. He, M. Y. Hutchinson, Interlaminar fracture toughness and toughening of laminated composite materials : a review, J. Appl. Mech., vol. 111, no. 5, pp. 270–78, 1989.
[8] S. Ramakrishna, K. Fujihara, W. Teo, M. Z. Lim TC, An Introduction to Electrospinning And Nanofibers, january. 2005.
[9] L. Daelemans et al., Bisphenol A based polyester binder as an effective interlaminar toughener, Compos Part B Eng., vol. 80, no. April 2016, pp. 145–153, 2015.
[10] Y. A. Dzenis, D. H. Reneker, Delamination resistant composites prepared by small fiber reinforcement at ply interfaces, US Patent No. WO1999062705A1, 1999.
[11] Y. A. Dzenis, N.Lincoln, R. A. Darrell, Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces, 21-Feb-2001.
[12] L. Liu, Y. M. Liang, G. Y. Xu, Response of mode II interlaminar fracture toughness of composite laminates with carbon nanotubes interlayer, Proc SPIE, vol. 6423, pp. 642351-642351–7, 2007.
[13] R. Palazzetti, Flexural behavior of carbon and glass fiber composite laminates reinforced with Nylon 6,6 electrospun nanofibers, J. Compos. Mater., vol. 49, no. 27, pp. 3407–3413, 2015.
[14] H. Saghafi, R. Palazzetti, A. Zucchelli, and G. Minak, Influence of electrospun nanofibers on the interlaminar properties of unidirectional epoxy resin/glass fiber composite laminates, J. Reinf. Plast. Compos., vol. 34, no. 11, 2015.
[15] S. van der Heijden et al., Novel composite materials with tunable delamination resistance using functionalizable electrospun SBS fibers, Compos. Struct., vol. 159, pp. 12–20, Jan. 2017.
[16] M. Hojo, S. Matsuda, M. Tanaka, S. Ochiai, A. Murakami, Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates, Compos. Sci. Technol., vol. 66, no. 5, pp. 665–675, 2006.
[17] H. Zhang, A. Bharti, Z. Li, S. Du, E. Bilotti, T. Peijs, Localized toughening of carbon/epoxy laminates using dissolvable thermoplastic interleaves and electrospun fibres, Compos. Part A Appl. Sci. Manuf., vol. 79, pp. 116–126, 2015.
[18] P. M. Hossein, S. Kashi, Experimental investigation of the influence of adding nanotubes on Mode I interlaminar fracture toughness of laminated composites, vol. 16, no. 3, pp. 3–4, 2016.
[19] M. HADI, A. EHSANI, Anodized Edge-plane pyrolytic graphite for electroanalysis of pantoprazole in tablet dosage forms and human urine samples, South African J. Chem., vol. 69, pp. 79–87, 2016.
[20] ASTMD-3531, Standard Test Method for Resin Flow of Carbon Fiber-Epoxy Prepreg, Annual Book of ASTM Standard,2000.
[21] ASTND-5528, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Annual Book of ASTM Standard,2007.
[22] ASTMD-7905, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Annual Book of ASTM Standard , 2014.
[23] G. W. Beckermann, K. L. Pickering, Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils, Compos. Part A Appl. Sci. Manuf., vol. 72, pp. 11–21, 2015.
[24] H. Movahhedi Aleni, G. Liaghat, M. Pol, A. Afrouzian, An experimental investigation on mode-II interlaminar fracture toughness of nanosilica modified glass/epoxy fiber-reinforced laminates, Modares Mech. Eng., vol. 15, no. 3, pp. 283–290, 2015. (in Persianفارسی )
[25] K. E. Ger, in polymer chemistry(PVB), Kurray data sheet.
[26] M. Hajian, M. R. Reisi, G. A. Koohmareh, A. R. Z. Jam, Preparation and characterization of polyvinylbutyral/Graphene nanocomposite, J. Polym. Res., vol. 19, no. 10, 2012.
[27] L. Daelemans, S. Van Der Heijden, I. De Baere, H. Rahier, W. Van Paepegem, K. De Clerck, Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms, ACS Appl. Mater. Interfaces, vol. 8, no. 18, pp. 11806–11818, 2016.
[28] M. Andrieu, Pyrocarbons,Carbon, vol. 40, pp. 7–24, 2002.
[29] S. Hamer et al., Mode I and Mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates, Compos. Sci. Technol., vol. 90, pp. 48–56, 2014.
[30] S. van der Heijden et al., Interlaminar toughening of resin transfer molded laminates by electrospun polycaprolactone structures: Effect of the interleave morphology, Compos. Sci. Technol., vol. 136, pp. 10–17, 2016.
[31] M. Properties, M. Reinforced, P. Alcohol, N. Mats, E. Method, Mechanical Properties of MWCNT Reinforced Polyvinyl Alcohol Nanofiber Mats by Electrospinnig Method, vol. 2017, no. 2, pp. 190–200, 2017.
[32] R. B. More, A. D. Haubold, J. C. Bokros, Pyrolytic Carbon for Long-Term Medical Implants, Third Edition., vol. 3, no. 2002. Elsevier, 2013.