[1] A. A. Bykov, Bimetal Production and application, Steel in Translation, Vol. 41, No. 9, pp. 778.786, 2011.
[2] M. H. Parsa, K. Yamaqushi, N. Takakura, Redrawing analysis of aluminum-stainless laminated sheet using FEM simulation and experiments, Mechanical Science, Vol. 43, No. 10, pp. 2331-2347, 2001.
[3] H.C. Tseng, C. Hung, C. C. Huang, An analysis of the formability of aluminum/copper clad metals with different thickness by the finite element method and experiment, Advanced Manufacturing Technology, Vol. 49, No. 9, pp. 1029-1036, 2010.
[4] A. J. Aghchai, M. Shakeri, B. M. Dariani, Influences of material properties of components on formability of two-layer metallic sheets, Advanced Manufacturing Technology, Vol. 66, No. 5, pp. 809-823, 2013.
[5] M. R. Morovvati, B. M. Dariani, M. H. A. Ardakani, A theoretical, numerical, and experimental investigation of plastic wrinkling of circular two-layer sheet metal in the deep drawing, Materials Processing Technology, Vol. 210, No. 13 pp. 1738-1747, 2010.
[6] E. Karajibani, A. Fazli, R. Hashemi, Numerical and experimental study of formability in deep drawing of two-layer metallic sheets, Advanced Manufacturing Technology, Vol. 80, No. 1, pp. 113-121, 2015.
[7] A. Atrian, F. Fereshte-Saniee, Deep drawing process of steel/brass laminated sheets, Composites: Part B, Vol. 47, pp. 75-81, 2013.
[8] S. Bagherzadeh, M. J. Minna, B. M. Dariani, Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets, Manufacturing Processes, Vol. 18, pp.131-140, 2015.
[9] M. R. Morovvati, A. Fatemi, M. Sadighi, Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheets metals in deep drawing process, Advanced Manufacturing Technology, VoL 54, No. I, pp. 113-121, 2011.
[10] M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi, A. Assempour, Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending. Proceedings of the Institution of Mechanical Engineers, Part L: Materials: Design and Applications, Vol. 230, pp. 1-12, 2016.
[11] G. M. Goodwin, Application of strain analysis of sheet metal forming problems in the press shop, Society of Automotive Engineers, No. 680093, 1968.
[12] M. Habib', A. Ghazanfari, A. Assempour, R. Naghdabadi, R. Hashemi, Determination of Forming Limit Diagram Using Two Modified Finite Element Models, Amirkabir Journal of Mechanical Engineering, Vol. 48, No. 4, pp. 379-388, 2017.
[13] A. Ghazanfari, A. Assempuor, M. Habibi, R. Hashemi, Investigation on the effective range of the through thickness shear stress on forming limit diagram using modified Marciniak-Kuczynski model, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 137-143, 2016. (in Persian
[14] A. Fazaeli, M. Habibi, AA. Ekrami, Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite - pearlite steel with the same chemical composition, Metallurgical Engineering, Vol. 19, No. 2, pp. 84-93, 2016. (in Persian ,..,11)
[15] W. Choi, P. Gillis, S. E. Jones, Calculations of the forming limit diagram, Metallurgical Transactions A, Vol. 20, No. 10, pp. 1-13, 1975.
[16] H. B. Campos, M. C. Butuc, J. J. Gracio, J. E. Rocha, J. M. F. Duarte, Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel, Materials Processing Technology, Vol. 179, No. 1, pp. 56-60, 2006.
[17] C. Zhang, L. Leotoing, G. Zhao, D. Guines, E. Ragneau, Comparative study of different necking criteria for numerical and experimental prediction of FLCs, Materials Engineering and Performance, Vol. 20, No. 6, pp. 1036-1042, 2011.
[18] M. C. Butuc, J. J. Gracio, A. B. Rocha, A theoretical study on forming limit diagrams prediction, Materials Processing Technology, Vol. 142, No. 3, pp. 714-724,2003.
[19] Y. Zhou, K. W. Neale, Predictions of forming limit diagrams using a rate-sensitive crystal plasticity model, Mechanical Sciences, Vol. 37, No. 1, pp. I - 20, 1995.
[20] M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari, H. Lashini. Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures, Materials Engineering and Performance, Vol. 25, No. 2, pp. 382-389, 2016.
[21] E. Karajibani, R. Hashemi, M. Sedighi, Determination of forming limit curve in two-layer metallic sheets using the fmite element simulation, Proceedings of the Institution of Mechanical Engineers, Part L: Materials Design and Applications, Vol. 230, No. 6, pp. 1018-1029.
[22] E. Karajibani, R. Hashemi, M. Sedighi, Forming limit diagram of aluminum-copper two-layer sheets: numerical simulations and experimental verifications, Advanced Manufacturing Technology, Vol. 90, No. 9, pp. 2713-2722, 2017.
[23] T. Sun, J. Liang, X. Guo, M. Ren, L. Wang, Optical measurement of forming limit and formability of Cu/Al Clad Metals, Materials Engineering and Performances, Vol. 24, No. 4, pp. 1426-1433, 2015.
[24] M. Habibi, R. Hashemi, MF. Tafti, A. Assempour, Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding, Manufacturing Processes. Vol. 31, No. 1, pp. 310-323, 2018.
[25] Abaqus 2016 documentation, Accessed on 10 March 2018; http://abaqus.software.polimi. it/v2016/index.html.
[26] Y. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Solids and structures, Vol. 49, No. 25, pp. 3605-3615, 2012.
[27] V. Tvergard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, Vol. 32, No. 1, pp. 157-169, 1984.
[28] C. Zhiying, D. Xianghuai, The GTN model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming, Computational Materials Science, Vol. 44, No. 3, pp. 1013-1021, 2009.
[29] Z. H. Li, B. A. Bilby, I. C. Howard, A study of the internal parameters of ductile damage theory, Fatigue and fracture of Engineering Materials and Structures, Vol. 17, No. 9, pp. 1075-1087, 1994.
[30] Z. L. Zhang, A sensitivity analysis of material parameters for the Gurson constitutive model, Fatigue and fracture of Engineering Materials and Structures, Vol. 19, No. 5, pp. 561-570, 1996.
[31] R. Kiran, K. Khandelwal, Gurson model parameters for ductile fracture simulation in ASTM A992 steels, Fatigue and fracture of Engineering Materials and structures, Vol. 37, No. 2, pp. 1-13, 2013.
[32] N. Bendeddiq, A. Imad, A ductile fracture analysis using a local damage model, Pressure Vessels and Piping, Vol. 85, No. 4, pp. 219-227, 2008.