مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تعیین نمودار حد شکل‌دهی ورق دو لایه فولاد مس به صورت تجربی و عددی با در نظرگرفتن اتصال بین لایه‌ها

نویسندگان
1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران
2 کارشناس ارشد، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران
3 استاد، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران
چکیده
آنچه که در این تحقیق بیشتر مورد توجه قرار گرفته نحوه مدلسازی محل اتصال در ورقه ای دو لایه به منظور تعیین نمودار حد شکل دهی است. در این تحقیق از ورق دولایه ای استفاده شده که متشکل از یک لایه فولاد به ضخامت ۱.۳۵ میلیمتر و یک لایه مس به ضخامت ۰.۴۵ میلیمتر است. ورق دولایه به کار رفته در تحقیق حاضر به روش جوش انفجاری ساخته شده است. به منظور تعیین نمودار حد شکل دهی از روش عددی با به کارگیری نرم افزار المان محدود آباکوس استفاده شده است. در این رابطه تست های ناکازیما شبیه سازی شدند. معیار استفاده شده برای تعیین پارگی در لایههای فولادی و مسی مدل GTN بود، همچنین قانون کشش جدایش برای تعیین خرابی در محل اتصال ورقها به کار برده شد. برای مدلسازی لایه میانی از المان های چسبنده استفاده شد. به منظور صحه گذاری بر نتایج به دست آمده به انجام آزمایش تجربی ناکازیما پرداخته گردید. تمامی شبیه سازی ها و کارهای تجربی برای هر دو حالت قرارگیری ورقها به صورت پشت و رو انجام گرفت. نتایج نشان می دهد که نمودارهای حد شکل دهی به دست آمده با استفاده از روش مدلسازی یادشده مطابقت خوبی با نتایج تجربی دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers

نویسندگان English

S.M.R. Hosseini 1
M. Habibi 2
A. Assempour 3
1 Faculty of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
2 Faculty of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
3 Faculty of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
چکیده English

In this study, special attention has been paid to modeling of the interface between the sheet metals in prediction of forming limit diagram (FLD) of two-layer sheets. In the present work, a two-layer sheet consists of 1.35 mm steel sheet and 0.45 mm copper sheet has been used. This two-layer sheet has been made by explosive welding method. To determine the FLD, numerical method has been used by applying ABAQUS finite element software. For this purpose, the so called Nakazima method has been simulated. The criteria used for determining the failure in steel and copper layers was GTN model. Also, in order to determine the failure in interface between the layers, the traction-separation law was used. For modeling the interface, cohesive elements were used. In order to verify the results, Nakazima tests were performed. The simulations and experimental works were done for both side directions of the sheets. The results indicate that the FLDs obtained by the numerical modeling are in good agreement with the experimental results.

کلیدواژه‌ها English

Two-layer sheets
Forming Limit Diagram
Traction-Separation Law
Cohesive Element
[1] A. A. Bykov, Bimetal Production and application, Steel in Translation, Vol. 41, No. 9, pp. 778.786, 2011.
[2] M. H. Parsa, K. Yamaqushi, N. Takakura, Redrawing analysis of aluminum-stainless laminated sheet using FEM simulation and experiments, Mechanical Science, Vol. 43, No. 10, pp. 2331-2347, 2001.
[3] H.C. Tseng, C. Hung, C. C. Huang, An analysis of the formability of aluminum/copper clad metals with different thickness by the finite element method and experiment, Advanced Manufacturing Technology, Vol. 49, No. 9, pp. 1029-1036, 2010.
[4] A. J. Aghchai, M. Shakeri, B. M. Dariani, Influences of material properties of components on formability of two-layer metallic sheets, Advanced Manufacturing Technology, Vol. 66, No. 5, pp. 809-823, 2013.
[5] M. R. Morovvati, B. M. Dariani, M. H. A. Ardakani, A theoretical, numerical, and experimental investigation of plastic wrinkling of circular two-layer sheet metal in the deep drawing, Materials Processing Technology, Vol. 210, No. 13 pp. 1738-1747, 2010.
[6] E. Karajibani, A. Fazli, R. Hashemi, Numerical and experimental study of formability in deep drawing of two-layer metallic sheets, Advanced Manufacturing Technology, Vol. 80, No. 1, pp. 113-121, 2015.
[7] A. Atrian, F. Fereshte-Saniee, Deep drawing process of steel/brass laminated sheets, Composites: Part B, Vol. 47, pp. 75-81, 2013.
[8] S. Bagherzadeh, M. J. Minna, B. M. Dariani, Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets, Manufacturing Processes, Vol. 18, pp.131-140, 2015.
[9] M. R. Morovvati, A. Fatemi, M. Sadighi, Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheets metals in deep drawing process, Advanced Manufacturing Technology, VoL 54, No. I, pp. 113-121, 2011.
[10] M. Habibi, R. Hashemi, A. Ghazanfari, R. Naghdabadi, A. Assempour, Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending. Proceedings of the Institution of Mechanical Engineers, Part L: Materials: Design and Applications, Vol. 230, pp. 1-12, 2016.
[11] G. M. Goodwin, Application of strain analysis of sheet metal forming problems in the press shop, Society of Automotive Engineers, No. 680093, 1968.
[12] M. Habib', A. Ghazanfari, A. Assempour, R. Naghdabadi, R. Hashemi, Determination of Forming Limit Diagram Using Two Modified Finite Element Models, Amirkabir Journal of Mechanical Engineering, Vol. 48, No. 4, pp. 379-388, 2017.
[13] A. Ghazanfari, A. Assempuor, M. Habibi, R. Hashemi, Investigation on the effective range of the through thickness shear stress on forming limit diagram using modified Marciniak-Kuczynski model, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 137-143, 2016. (in Persian
[14] A. Fazaeli, M. Habibi, AA. Ekrami, Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite - pearlite steel with the same chemical composition, Metallurgical Engineering, Vol. 19, No. 2, pp. 84-93, 2016. (in Persian ,..,11)
[15] W. Choi, P. Gillis, S. E. Jones, Calculations of the forming limit diagram, Metallurgical Transactions A, Vol. 20, No. 10, pp. 1-13, 1975.
[16] H. B. Campos, M. C. Butuc, J. J. Gracio, J. E. Rocha, J. M. F. Duarte, Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel, Materials Processing Technology, Vol. 179, No. 1, pp. 56-60, 2006.
[17] C. Zhang, L. Leotoing, G. Zhao, D. Guines, E. Ragneau, Comparative study of different necking criteria for numerical and experimental prediction of FLCs, Materials Engineering and Performance, Vol. 20, No. 6, pp. 1036-1042, 2011.
[18] M. C. Butuc, J. J. Gracio, A. B. Rocha, A theoretical study on forming limit diagrams prediction, Materials Processing Technology, Vol. 142, No. 3, pp. 714-724,2003.
[19] Y. Zhou, K. W. Neale, Predictions of forming limit diagrams using a rate-sensitive crystal plasticity model, Mechanical Sciences, Vol. 37, No. 1, pp. I - 20, 1995.
[20] M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari, H. Lashini. Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures, Materials Engineering and Performance, Vol. 25, No. 2, pp. 382-389, 2016.
[21] E. Karajibani, R. Hashemi, M. Sedighi, Determination of forming limit curve in two-layer metallic sheets using the fmite element simulation, Proceedings of the Institution of Mechanical Engineers, Part L: Materials Design and Applications, Vol. 230, No. 6, pp. 1018-1029.
[22] E. Karajibani, R. Hashemi, M. Sedighi, Forming limit diagram of aluminum-copper two-layer sheets: numerical simulations and experimental verifications, Advanced Manufacturing Technology, Vol. 90, No. 9, pp. 2713-2722, 2017.
[23] T. Sun, J. Liang, X. Guo, M. Ren, L. Wang, Optical measurement of forming limit and formability of Cu/Al Clad Metals, Materials Engineering and Performances, Vol. 24, No. 4, pp. 1426-1433, 2015.
[24] M. Habibi, R. Hashemi, MF. Tafti, A. Assempour, Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding, Manufacturing Processes. Vol. 31, No. 1, pp. 310-323, 2018.
[25] Abaqus 2016 documentation, Accessed on 10 March 2018; http://abaqus.software.polimi. it/v2016/index.html.
[26] Y. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Solids and structures, Vol. 49, No. 25, pp. 3605-3615, 2012.
[27] V. Tvergard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, Vol. 32, No. 1, pp. 157-169, 1984.
[28] C. Zhiying, D. Xianghuai, The GTN model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming, Computational Materials Science, Vol. 44, No. 3, pp. 1013-1021, 2009.
[29] Z. H. Li, B. A. Bilby, I. C. Howard, A study of the internal parameters of ductile damage theory, Fatigue and fracture of Engineering Materials and Structures, Vol. 17, No. 9, pp. 1075-1087, 1994.
[30] Z. L. Zhang, A sensitivity analysis of material parameters for the Gurson constitutive model, Fatigue and fracture of Engineering Materials and Structures, Vol. 19, No. 5, pp. 561-570, 1996.
[31] R. Kiran, K. Khandelwal, Gurson model parameters for ductile fracture simulation in ASTM A992 steels, Fatigue and fracture of Engineering Materials and structures, Vol. 37, No. 2, pp. 1-13, 2013.
[32] N. Bendeddiq, A. Imad, A ductile fracture analysis using a local damage model, Pressure Vessels and Piping, Vol. 85, No. 4, pp. 219-227, 2008.