[1] R. J. LeVeque, Finite volume methods for hyperbolic problems, pp. 64-312, Cambridge: Cambridge university press, 2002.
[2] E. F. Toro, Shock-capturing methods for free-surface shallow flows, pp. 15-253, Michigan: John Wiley, 2001.
[3] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM Journal on Scientific Computing, Vol. 25, No. 6, pp. 2050-2065, 2004.
[4] Q. Liang, F. Marche, Numerical resolution of well-balanced shallow water equations with complex source terms, Advances in water resources, Vol. 32, No. 6, pp. 873-884, 2009.
[5] D. S. Bale, R. J. LeVeque, S. Mitran, J. A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM Journal on Scientific Computing, Vol. 24, No. 3, pp. 955-978, 2003.
[6] D. L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation, Journal of Computational Physics, Vol. 227, No. 6, pp. 3089-3113, 2008.
[7] C. Bourdarias, S. Gerbi, A finite volume scheme for a model coupling free surface and pressurised flows in pipes, Journal of Computational and Applied Mathematics, Vol. 209, No. 1, pp. 109-131, 2007.
[8] H. Mahdizadeh, P. K. Stansby, B. D. Rogers, On the approximation of local efflux/influx bed discharge in the shallow water equations based on a wave propagation algorithm, International Journal for Numerical Methods in Fluids, Vol. 66, No. 10, pp. 1295-1314, 2011.
[9] H. Mahdizadeh, P. K. Stansby, B. D. Rogers, Flood wave modeling based on a two-dimensional modified wave propagation algorithm coupled to a full-pipe network solver, Journal of Hydraulic Engineering, Vol. 138, No. 3, pp. 247-259, 2011.
[10] G. Kesserwani, S. Lee, M. Rubinato, J. Shucksmith, Experimental and numerical validation of shallow water flow around a surcharging manhole, URBAN DRAINAGE MODELLING 2015, Vol. 1, pp. 145-154, 2015.
[11] A. R. Haghighi, Sh. Pakrou, Comparison of the LBM with the modified local Crank-Nicolson method solution of transient one-dimensional nonlinear Burgers’ equation, International Journal of Computing Science and Mathematics, Vol. 7, No. 5, pp. 459-466, 2016.
[12] A. R. Haghighi, A. Shadipour, M. Shahbazi Asl, Numerical simulation of micropolar fluid flow through an asymmetric tapered stenosis artery, Modares Mechanical Engineering Journal, Vol. 17, No. 12, pp. 33-41, 2017. (in Persianفارسی )
[13] S. Moodi, H. Mahdizadeh, M. Azhdary Moghaddam, Numerical Modelling of Water Entrance into a Wet Tank Using a Modified Wave Propagation Algorithm, Modares Mechanical Engineering Journal, Vol. 17, No. 4, pp. 168-176, 2017. (in Persianفارسی )
[14] H. Mahdizadeh, H. Cheharbidi, S. Moodi, Numerical Modelling of Flood Waves Propagation in Sewer Networks using One- and Two-Dimensional Modified HLLC Method, Modares Mechanical Engineering Journal, Vol. 17, No. 7, pp. 273-282, 2017. (in Persianفارسی )
[15] M. Barzgaran, H. Mahdizadeh, S. Pouresmaeil, A Weakly Coupled Scheme for Modelling Bedload Sediment Transport Using an Augmented Rieman Solver, Modares Mechanical Engineering Journal, Vol. 17, No. 9, pp. 406-416, 2017. (in Persianفارسی )
[16] R. J. LeVeque, High resolution finite volume methods on arbitrary grids via wave propagation, in: Upwind and High-Resolution Schemes, Eds., pp. 491-518: Springer, 1988.
[17] R. J. LeVeque, Wave propagation algorithms for multidimensional hyperbolic systems, Journal of Computational Physics, Vol. 131, No. 2, pp. 327-353, 1997.
[18] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM journal on numerical analysis, Vol. 21, No. 5, pp. 995-1011, 1984.
[19] A. Harten, J. M. Hyman, Self adjusting grid methods for one-dimensional hyperbolic conservation laws, Journal of computational physics, Vol. 50, No. 2, pp. 235-269, 1983.
[20] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, pp. 124-512, Springer Science & Business Media, 2013.
[21] B. Einfeldt, On Godunov-type methods for gas dynamics, SIAM Journal on Numerical Analysis, Vol. 25, No. 2, pp. 294-318, 1988.
[22] R. J. LeVeque, D. L. George, High-resolution finite volume methods for the shallow water equations with bathymetry and dry states, Advanced numerical models for simulating tsunami waves and runup, Vol. 10, pp. 43-73, 2008.
[23] B. Einfeldt, C.-D. Munz, P. L. Roe, B. Sjögreen, On Godunov-type methods near low densities, Journal of computational physics, Vol. 92, No. 2, pp. 273-295, 1991.
[24] H. Mahdizadeh, Modelling of flood waves based on wave propagation: algorithms with bed efflux and influx including a coupled-pipe network solver, Thesis, University of Manchester, 2011.
[25] R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, Journal of computational physics, Vol. 146, No. 1, pp. 346-365, 1998.
[26] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of computational physics, Vol. 49, No. 3, pp. 357-393, 1983.