مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدلسازی و تحلیل ارتعاشی خط لوله حاوی سیال در طی عملیات پیگرانی توسط روش المان محدود و آنالیز مودال تجربی

نویسندگان
1 دانشگاه تبریز
2 'گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تبریز ، تبریز، ایران
3 گروه مهندسی مکانیک،دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران
چکیده
در این مقاله یک مدل خطی مناسب برای بررسی رفتار ارتعاشی خطوط لوله با تکیه‌گاه‌های ساده که تحت عملیات پیگ‌رانی قرار دارد، ارائه و تحلیل شده است. در این فرایند پیگ (به عنوان جرم ثابت فنربندی شده‌ی متحرک) که توسط سیال محرک مایع (به منزله جرم متغیر متحرک داخلی) حرکت می‌کند، در نظر گرفته شده است. با استفاده از اصل همیلتون و لحاظ نمودن معادلات ممنتم و پیوستگی سیال و نیز استفاده از یک مدل ارتعاشی برای پیگ، معادلات حاکم استخراج شده، و سپس با استفاده روش گالرکین در المان محدود، معادلات ارتعاشی سیستم (لوله، سیال و پیگ) گسسته‌سازی و حل شده‌اند. با استخراج پارامتر‌های مودال سیستم خط لوله، تغییرات آن ها حین عبور پیگ در حالت گذرا و در طی بازه‌های زمانی متوالی، با دِبی‌های مختلفِ سیالِ محرک، مورد بررسی قرار گرفته است. جهت صحه‌گذاری، از یک مدل تجربی شامل لوله‌ای به قطر 3 اینچ و با طول 2.5 متر و یک عدد پیگ ساده با دیسک‌های لاستیکی به همراه پمپ و شیر توپی، استفاده شده است. با جمع‌آوری سیگنال‌های ارتعاشی از بدنه لوله حین فرایند پیگ رانی و استفاده از آنالیز مودال، ارتباط مناسبی بین داده های تجربی و داده های تحلیلی حاصل از مدل تئوری بدست آمده و تغییرات فرکانس های طبیعی سیستم، برحسب سرعت و موقعیت پیگ با هر دو روش تحلیلی و تجربی بدست آمده است. همچنین جابجایی نقطه میانی لوله در اثر فرایند پیگ رانی به صورت تحلیلی و با استفاده از مدل تئوری پیشنهاد شده، مورد بررسی قرار گرفته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling and vibration analysis of pipeline in the course of pigging operation, using FEM and experimental modal analysis

نویسندگان English

Saeed Chitsaz 2
Mir Mohammad Ettefagh 3
2 Mech.Eng. Dept, University of Tabriz, Tabriz, Iran
3 ِDept. of Mech. Eng., University of Tabriz, Tabriz, Iran
چکیده English

In this paper, a linear dynamic model of simply supported Above-Ground pipeline during pigging process has been developed and verified by experimental tests. The PIG (Pipeline Inspection Gadget), is an internal moving sprung mass pushed by the fluid pressure, which itself act as a flowing varying mass. The governing equations of motion for the system including the pipeline, moving PIG as a moving vibrational sub-system, and flowing fluid with varying mass were obtained using Hamilton’s principle. Then, the extracted equations were discretized and solved via finite element method. Modal parameters of the pipeline system were calculated during intermittent passage of PIG through the pipe under different fluid flow rates, and their variations were extracted. Validation of the model was carried out using an experimental setup, including a 2.5 meter length Carbon Steel pipe, a simple bi-directional PIG with rubber discs and a centrifugal pump, connected to a control valve, providing required fluid pressure to push the PIG through the pipe. Using data acquisition system to acquire the vibration signals, and employing experimental modal analysis, frequency responses of the system at different points were obtained and the modal parameters were extracted and compared to that of the simulated model. A comparable results have been achieved between theoretical and experimental methods. Also variation of the system natural frequency versus speed and position of PIG in the pipe, were investigated. Moreover, the displacement of the mid-span of considered pipe during pigging process has been obtained using suggested theoretical model.

کلیدواژه‌ها English

Vibration
Pipeline
Pipe Containing Fluid
PIG
Pigging Process
[1] H. Ashley, G .Haviland, Bending Vibrations of a Pipe Line Containing Flowing Fluid. Journal of Applied Mechanics, Vol. 17, pp. 229-132, 1950.
[2] R. W. Gregory, M. P. Paidoussis, Unstable Oscillation of Tubular Cantilevers Conveying Fluid. I. Theory., The Royal Society, 1966.
[3] S. S. Chen, Dynamic stability of tube conveying fluid. ASCE Journal of the Engineering Mechanics, Division 97, pp. 1469–1485, 1971.
[4] P. J. Holmes, Pipes Supported at Both Ends Cannot Flutter, ASME Journal of Applied Mechanics, Vol. 45, Issue 3, pp. 619–622, 1978.
[5] Sv. V. Lilkova-Markova and V. A. Dzhupanov, Dynamic stability of cantilevered pipes supported by additional structural spring supports. Part 1. Short pipes/ Part 2. Long pipes, Proc. 9th Bulgarian National Congress: TAM, Varna, Bulgaria, 19-22th September, 2001.
[6] J. N. H. Tiratsoo, PIPELINE PIGGING TECHNOLOGY, Gulf Professional Publishing, 2nd Edition,1992.
[7] A. McDonald, O. Baker, Multiphase Flow in (Gas) Pipelines, Oil and Gas Journal. 62 (24), 68-71, 62(25):171-175, 62(26):64-67, 62(27): 118-119, 1964.
[8] E. G. C. Burt, R. MacDonald, Pig Signaling, Location and Tracking, The Pipeline Pigging Conference, Houston, PA, 1997.
[9] X. Xiao-Xuan, J. Gong, Pigging Simulation For Horizontal Gas-Condensate Pipelines With Low Liquid Loading, Journal of Petroleum Science and Engineering, Vol. 48, pp. 272-280, 2005.
[10] F. Esmaeilzadeh, D. Mowla, M. Asemani, Mathematical Modeling and Simulation of Pigging Operation in Gas and Liquid Pipelines, Journal of Petroleum Science and Engineering, Vol. 69, pp. 100-106, 2009.
[11] S. T. Tolmasquim, A. O. Nieckele, Design and Control of PIG Operations through Pipelines, Journal of Petroleum Science and Engineering, Vol. 62, pp. 102-110, 2008.
[12] L. F. A. Azevedo, A. M. B. Braga, M. G. F. M. Gomes, Experimental Validation of Analytical Models for By-pass Flow and Contact Forces in Pig Cups, The Pipeline Pigging Conference, Houston, Texas, 1997.
[13] A. O. Nieckele, A. M. B. Braga, L. F. A. Azevedo, Transient PIG Motion trough Gas and Liquid Pipelines, Journal of Energy Resources Technology of ASME, Vol. 123, pp. 260-269, 2001.
[14] H. Zhang, Sh. Zhang, Sh. Liu, X. Zhu, B. Tang, Chatter vibration phenomenon of pipeline inspection gauges (PIGs) in natural gas pipeline, Journal of Natural Gas Science and Engineering, pp. 1-12, 2015.
[15] A. N. Krylov, Mathematical Collection of Paper of Academy of Sciencs, Vol. 61, Peterburg 1905.
[16] S. P. Timoshenko, Forced Vibration of Prismatic Bars, Izvestia Kievskogo Olitekhnicheskogo Instituta, 1908. (In Russian).
[17] H. I. Yoon, I. S. Son, Dynamic Behavior of Cracked Simply Supported Pipe Conveying Fluid with Moving Mass, Journal of Sound and Vibration, Vol. 292, pp. 941-953, 2006.
[18] G. W. Housner, Bending Vibration of a Pipe Line Containing Flowing Fluid, Journal of Applied Mechanics, Vol. 205, June 1952.
[19] G. Heinrich, Vibrations of Tubes with Flow, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 36 (11/12), pp. 417–429, 1956.
[20] R. Skalak, An Extension of the Theory of Water Hammer, Transactions of the ASME Vol. 78, pp. 105–116, 1956.
[21] V. O. S. Olunloyo, A. A. Oyediran, A. Adewale, A. O. Adelaja, C. A. Osheko, Concerning the Transverse and Longitudinal Vibrations of a Fluid Conveying Beam and the Pipe Walking Phenomenon, Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering–OMAE, San Diego, CA, Vol. 3, pp. 285–298, 2007.
[22] Usik Lee, Spectral Element Method in Structural Dynamics, John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82374-3, 2009.
[23] U. Lee, J. Kim, Dynamics of Branched Pipeline Systems Conveying Internal Unsteady Flow, Journal of Vibration and Acoustics, Vol. 121, pp. 114–122, 1999.
[24] S. M. Hosseinalipour, A. ZarifKhalili, A. Salimi, Numerical Simulation of PIG Motion through Gas Pipelines, 16th Australasian Fluid Mechanics Conference, 2007.
[25] X. Xiao-Xuan, J. Gong, Pigging Simulation for Horizontal Gas-Condensate Pipelines with Low Liquid Loading, Journal of Petroleum Science and Engineering,Vol. 48, pp. 272-280, 1999.
[26] M. Durali, A. Fazeli, Investigation of Dynamics and Vibration of PIG in Oil and Gas Pipelines, ASME 2007 International Mechanical Engineering Congress and Exposition, pp. 2015-2024, 2008.
[27] L. Fernando, A. Azevedo, A. Braga, M. Gomes, Experimental Validation of Analytical and Numerical Models for By-pass Flow and Contact Forces on Pig Cups, Pipeline Pigging and Integrity Monitoring Conference, Houston, 1997.
[28] S. T. Tolmasquim, A. O. Nieckele, Design and Control of PIG Operations through Pipelines, Journal of Petroleum Science and Engineering, Vol. 62, pp. 102-110, 2008.
[29] X. Zhu, D. Wang, H. Yeung, Sh. Zhang, Sh. Liu, Comparison of Linear and Nonlinear Simulations of Bidirectional PIG Contact Forces in Gas Pipelines, Journal of Natural Gas Science and Engineering,Vol. 27, pp. 151-157, 2015.
[30] N. M. M. Maia, J. M. M. Silva, Theoretical and Experimental Modal Analysis, Research Studies Press L.T.D., John Wiley & Sons INC.