مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

یکنواخت‌سازی کاتالوگ ستاره به روش مثلث‌‌بندی جهت کاربرد در حس‌گر ستاره

نویسندگان
1 دینامیک پرواز و کنترل ماهواره، دانشکده هوافضا، دانشگاه خواجه نصیر الدین طوسی، تهران، ایران
2 استاد/دانشگاه خواجه نصیر
3 دانشگاه صنعتی خواجه نصیر-دانشکده هوا فضا
چکیده
حجم پایگاه داده و کمینه ستاره‌های قابل مشاهده در میدان دید حس‌گر ستاره دو پارامتر مهم، تأثیرگذار و در عین حال متناقض می‌باشند که می‌بایست در طراحی مورد توجه قرار گیرند. در این راستا هدف از این مقاله یکنواخت‌سازی پایگاه داده با استفاده از توزیع یکنواخت نقاط بر روی کره سماوی و به روش مثلث‌بندی است. برای این منظور انتخاب کاتالوگ ستاره مناسب، قدر کمینه مطلوب و حذف ستاره‌های دوبل ازجمله سایر مراحل فرآیند یکنواخت‌سازی می‌باشد که در این تحقیق انجام شده است. بدین‌ترتیب نتایج بررسی‌های انجام گرفته نشان داد که مثلث‌بندی دلونی به روش استریپک سریع‌تر و دقیق‌تر از روش شبکه ژئودزیک است. همچنین با انجام شبیه‌سازی و اجرای تست‌های مونت‌کارلو جهت شمارش تعداد ستاره‌های مشاهده شده در میدان دید‌های مختلف یک حس‌گر ستاره نوعی، مشخص گردید یکنواخت‌سازی به روش مثلث‌بندی دلونی منجر به کاهش چشمگیر احتمال مشاهده تراکم زیاد ستاره‌های کاتالوگ در میدان دید حس‌گر می‌گردد به‌گونه‌ای که احتمال مشاهده بیش از 25 ستاره در تمامی میدان‌های دید ممکن به صفر رسیده است. از سویی دیگر برای مشاهده 4 و یا بیشتر از 4 ستاره در سطح اطمینان بیشتر از 95%، در کاتالوگ غیریکنواخت نیاز به میدان دید حداقل 12.5 درجه می‌باشد. این در حالی است که در پایگاه داده یکنواخت شده این میدان دید به اندکی بیش از 13 درجه افزایش یافته است؛ به‌عبارت دیگر یکنواخت‌سازی تا حدودی کمینه میدان دید لازم جهت مشاهده حداقل تعداد ستاره مورد نیاز را افزایش داده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Uniform star catalog using triangulation for application in star sensor

نویسندگان English

farshad somayehee 1
amir ali nikkhah 2
jafar roshanina 3
1 Department of Flight Dynamics & Control, Faculty of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, IRAN
2 professor
3 professor
چکیده English

The size of database and minimum number of visible stars in the field of view of star sensor are two important, influential and contradictory parameters that should be considered in design of star sensor. In this regard, the purpose of this paper is to unify the database using the uniform distribution of points on the celestial sphere with the triangulation method. For this purpose, the choice of the suitable star catalog, minimum suitable magnitude and elimination of double stars are the other steps of the uniformity process that is carried out in this study. Thus, the results of the investigations showed that Delaunay's triangulation method is faster and more accurate than the geodesic grid. Also, by simulating and performing Monte Carlo tests to count the number of stars observed in the different FOVs of a typical sensor, it was found that Delaunay's triangulation leads to a significant reduction of the probability of viewing the high density of the catalog stars in the field of view, so that the probability of observation more than 25 stars in all possible FOVs has reached to zero. On the other hand, for observing 4 or more than 4 stars at a confidence level more than 95% in non-uniform catalog, the field of view needs to be at least 12.5 degrees, while in uniform database; this field is slightly increased to more than 13 degrees. In other words, uniformity has increased the minimum field of view needed to see the minimum number of required stars.

کلیدواژه‌ها English

Star Sensor
Star catalog
Uniform sky
Delaunay’s Triangulation
Geodesic grid
[1] V. L. Pisacane, Fundamentals of space systems: Johns Hopkins University/Appli, 2005.
[2] C. L. Cole, J. Crassidus, Fast star pattern recognition using spherical triangles: State University of New York at Buffalo, 2004.
[3] M. A. Samaan, C. Bruccoleri, D. Mortari, J. L. Junkins, Novel techniques for creating nearly uniform star catalog, Advances in the Astronautical Sciences, Vol. 116, pp. 1-13, 2004.
[4] H.-Y. Kim, J. L. Junkins, Self-organizing guide star selection algorithm for star trackers: thinning method, Aerospace Conference Proceedings, 2002. IEEE. Vol. 5, pp. 5-5, 2002.
[5] B. B. Spratling, D. Mortari, A survey on star identification algorithms, Algorithms, Vol. 2, No. 1, pp. 93-107, 2009.
[6] J. Martín-Fleitas, A. Mora, J. Sahlmann, R. Kohley, B. Massart, J. L'hermitte, M. L. Roy, P. Paulet, Enabling Gaia observations of naked-eye stars, arXiv preprint arXiv:1408.3039, 2014.
[7] G. Zhang, Star Identification: Methods, Techniques and Algorithms: Springer, 2016.
[8] C. Zhang, C. Chen, X. Shen, A new guide star selection algorithm for star tracker, in Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, 2004, pp. 5445-5449.
[9] X. Li, J. Yang, L. Zhang, S. Li, G. Jin, A new simplified selection algorithm of the guide star catalogue for a star sensor, The Journal of Navigation, Vol. 67, No. 6, pp. 984-994, 2014.
[10] J. Roshanian, S. Yazdani, M. Ebrahimi, M. J. Hasani Kabutarkhani, Uniform Star Catalog Generation and Comparison Criterion Introduction for a Typical Star Tracker, Modares Mechanical Engineering, Vol. 15, No. 3, 2015. (in Persian فارسی)
[11] J. Roshanian, S. Yazdani, S. BekranBehesht, M. Ebrahimi, 2MASS infrared star catalog data mining for use onboard a daytime star tracker, in Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, 2015, pp. 75-79.
[12] M. Ebrahimi, J. Roshanian, S. Yazdani, S. BekranBehesht, Develop mission catalog and resistant pattern recognition algorithm to enhance the performance of the star tracker throughout the day, Tabriz Mechanical Engineering, pp., 2017. ( inPersian فارسی)
[13] M. Perryman, The HIPPARCOS and TYCHO catalogues, star, Vol. 2, pp. 2π1, 1997.
[14] J. Roshanian, S. M. M. Hasani, S. Yazdani, M. Ebrahimi, Star Catalog Criteria Selection and Mission Catalog Update for a Typical Star Tracker, JSST, Vol. 5, No. 4, pp. 8, 1391. ( inPersian فارسی)
[15] J. A. De Loera, J. Rambau, F. Santos, Triangulations Structures for algorithms and applications: Springer, 2010.
[16] M. De Berg, M. Van Kreveld, M. Overmars, O. C. Schwarzkopf, Computational geometry, in: Computational geometry, Eds., pp. 1-17: Springer, 2000.
[17] B. Delaunay, Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, Vol. 7, No. 793-800, pp. 1-2, 1934.
[18] F. Mortari, Automatic Extraction of Improved Geometrical Network Model from CityGML for Indoor Navigation, Master). TU Delft, 2013.
[19] R. J. Renka, Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere, ACM Transactions on Mathematical Software (TOMS), Vol. 23, No. 3, pp. 416-434, 1997.
[20] J. Kohout, I. Kolingerová, J. Žára, Parallel Delaunay triangulation in E 2 and E 3 for computers with shared memory, Parallel Computing, Vol. 31, No. 5, pp. 491-522, 2005.
[21] P. Vanicek, E. J. Krakiwsky, Geodesy: the concepts: Elsevier, 2015.
[22] K. C. Clarke, Criteria and measures for the comparison of global geocoding systems, Discrete global grids: A web book. University of California, Santa Barbara.[http://www. ncgia. ucsb. edu/globalgrids-book], 2002.
[23] D. L. Williamson, Integration of the barotropic vorticity equation on a spherical geodesic grid, Tellus, Vol. 20, No. 4, pp. 642-653, 1968.
[24] R. Sadourny, A. Arakawa, Y. Mintz, Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere, Monthly Weather Review, Vol. 96, No. 6, pp. 351-356, 1968.
[25] J. Xie, H. Yu, K. L. Ma, Interactive ray casting of geodesic grids, in Computer Graphics Forum, 2013, pp. 481-490.
[26] D. A. Randall, T. D. Ringler, R. P. Heikes, P. Jones, J. Baumgardner, Climate modeling with spherical geodesic grids, Computing in Science & Engineering, Vol. 4, No. 5, pp. 32-41, 2002.
[27] L. E. Sjöberg, M. Shirazian, Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration, Journal of Surveying Engineering, Vol. 138, No. 1, pp. 9-16, 2012.
[28] J. Kovalevsky, P. K. Seidelmann, Fundamentals of astrometry: Cambridge University Press, 2004.
[29] R. C. Gonzalez, R. E. Woods, Digital image processing, Prentice hall New Jersey, 2002.
[30] B. Spratling IV, D. Mortari, RECURSIVE STAR-ID AND THE K-VECTOR ND, in 20th AAS/AIAA Space Flight Mechanics Meeting, San Diego, 2010.