1. R. Clift, J. R. Grace, M. E. Weber, Bubbles, drops, and particles, New York: AcademicPress; 1978.
2. D. Bhaga, M. E. Weber, Bubbles in viscous liquids: shapes, wakes and velocities, JFluid Mech, Vol. 105, pp. 61-85, 1981.
3. J. R.Grace, T. Wairegi, T. H. Nguyen, Shapes and velocities of single drops and bubbles moving freely through immiscible liquids, Trans. Inst. Chem. Eng, Vol. 54.3, pp. 167-173, 1976.
4. K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Physical Review A, Vol. 43, No. 8, p. 4320, 1991.
5. D. Grunau, S. Chen, K. Eggert, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A, Vol. 5, No. 10, p. 2557, 1993.
6. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E,Vol. 47, No. 3, p. 1815, 1993.
7. X. Shan, H. Chen, Simulation of non-ideal gases and liquid–gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, Vol. 49, p. 2941, 1994.
8. X. Shan, G. D. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys., Vol. 81, pp. 379-393, 1995.
9. X. Shan, G. Doolen, Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev. E, Vol. 54, No. 4, p. 3614, 1996.
10. M. R. Swift, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., Vol. 75, No. 5, p. 830, 1995.
11. M. R. Swift, E. Orlandini, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulation of liquid–gas and binary-fluid system, Phys. Rev. E,Vol. 54, No. 5, p. 5041, 1996.
12. E. Orlandini, M. R. Swift, J. R. Yeomans, A Lattice Boltzmann Model ofBinary-Fluid Mixtures, Europhys. Lett., Vol. 32, No. 6, pp. 463-468, 1995.
13. X. He, X. Shan, G. D. Doolen, A discrete Boltzmann equation model fornon-ideal gases, Phys. Rev. E, Vol. 57, No. 1, p. R13, 1998.
14. X. He, S. Chen, R. Zhang, A lattice Boltzmann scheme for incompressiblemultiphaseflow and its application in simulation of Rayleigh–Taylor instability, J.Comput. Phys., Vol. 152, No. 2, pp. 642–663, 1999.
15. X. He, R. Zhang, S. Chen, G. D. Doolen, On three-dimensional Rayleigh–Taylor instability, Phys. Fluids, Vol. 11, No. 5, p. 1143, 1999.
16. R. Zhang, X. He, S. Chen, Interface and surface tension in incompressiblelattice Boltzmann multiphase model, Comput. Phys. Commun., Vol. 129, pp. 121–130, 2000.
17. R. Zhang, X. He, G. Doolen, S. Chen, Surface tension effects ontwo-dimensional two-phase Kelvin-Helmholtz instabilities, Advances in Water Resources, Vol. 24, pp. 461-478, 2001.
18. R. Zhang, Lattice Boltzmann approach for immiscible multiphase flow, Ph.D. thesis, University of Delaware, 2000.
19. T. Inamuro, T. Ogata, S. Tajima, N. Konishi,lattice Boltzmann method for incompressible two-phase flows with large density differences, J.Com. Phy., Vol. 198, pp. 628–644, 2004.
20. T. Lee, C.L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of in compressible two-phase flows at high density ratio, J.Com. Phy.,Vol. 206, pp. 16–47, 2005.
21. H.W. Zheng, C. Shu, Y.T. Chew, A lattice Boltzmann for multiphase flows with large density ratio, J.Com. Phy., Vol. 218, pp. 353–371, 2006.
22. T. Lee, P.F. Fischer, Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases, Phys. Rev. E, Vol. 74, p.046709, 2006.
23. T. Lee, L. Liu, Wall boundary conditions in the lattice Boltzmann equation method for non-ideal gases, Physical Review E, Vol. 78, No. 017702, 2008.
24. T. Lee, Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids, Comput. Math.Appl. 58 (2009) 987–994.
25. T. Lee, L. Liu, Lattice Boltzmann simulationsof micron-scale drop impact on dry surfaces,J.Com. Phy., Vol. 229, pp. 8045-8063, 2010.
26. L. Amaya-Bower, T. Lee, Single bubble rising dynamics for moderate Reynolds number using LatticeBoltzmann Method, Computers & Fluids,Vol. 39, pp. 1191–1207, 2010.
27. L. Amaya-Bower, T. Lee, Numericalsimulationofsinglebubblerisinginverticalandinclinedsquare channel usinglatticeBoltzmannmethod, Chemical Engineering Science, Vol. 66, pp. 935–952, 2011.
28. M. Taghilou, M. H. Rahimian, Investigation of two-phase flow in porous media using latticeBoltzmann method, Computers and Mathematics with Applications, Vol. 67 pp. 424–436, 2014.
29. H. M. Mirzaie Daryan, M. H. Rahimian, Numerical Simulation of Single BubbleDeformation in Straight Duct and 90˚ BendUsing Lattice Boltzmann Method, Journal of Electronics Cooling and Thermal Control, Vol.5, pp. 89-118, 2015.
30. R. Haghan., M. H. Rahimian, Four different types of a single drop dripping down a hole undergravity by lattice Boltzmann method, Journal of Computational Applied Mechanics, Vol. 47, No. 1, pp 89-98, 2016.
31. L. Baroudi, M. Kawaji, T. Lee, Effects of initial conditions on the simulation of inertial coalescence of two drops. Computers & Mathematics with Applications, Vol. 67, No 2, pp 282-289, 2014.
32. R. Zhang, Multiscale liquid drop impact on wettable and textured surfaces. Physics of Fluids, Vol. 26, No. 8, 2014.
33. K. W. Connington, T. Lee, and J.F. Morris, Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid - gas -particle systems. Journal of Computational Physics, Vol. 283, pp. 453-477, 2015.
34. K. W. Connington, Lattice Boltzmann simulations of particle-laden liquid bridges: effects of volume fraction and wettability. International Journal of Multiphase Flow, Vol. 76, pp. 32-46, 2015.
35. S. Farokhirad, J. F. Morris, T. Lee, Coalescence-induced jumping of droplet: Inertia and viscosity effects. Physics of Fluids, Vol. 27, No. 10, 2015.
36. M. Ashna, M.H. Rahimian, A. Fakhari, Extended lattice Boltzmann scheme for droplet combustion. Physical Review E, Vol. 95, No. 5, 2017.
37. M. Ashna, M.H. Rahimian, LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime, International Journal of Heat and Mass Transfer, 109, pp.520-536, 2017.
38. E. Reyhanian, M.H. Rahimian, S.F. Chini, Investigation of 2D drop evaporation on a smooth and homogeneous surface using Lattice Boltzmann method. International Communications in Heat and Mass Transfer, 89, pp.64-72, 2017.
39. H. Amirshaghaghi, M.H. Rahimian, H. Safari, M. Krafczyk, Large Eddy Simulation of liquid sheet breakup using a two-phase lattice Boltzmann method, Computers & Fluids, 160, pp.93-107, 2018.
40. A. Fakhari, M. Geier,T. Lee,A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, Journal of Computational Physics, Vol. 315, pp.434-457, 2016.
41. P.-H. Chiu, Y.-T. Lin, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys. Vol. 230, pp 185–204, 2011.
42. M. Geier, A. Fakhari, T. Lee, Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, Vol. 91, 2015.
43. P. K. Jain, A. Tentner, Rizwan-uddin, A lattice Boltzmann framework to simulate boiling water reactor core hydrodynamics, Computers and Mathematics with Applications, Vol. 58, pp. 975-986, 2009.