مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی عددی برخورد حباب بالارونده به مانع متخلخل با استفاده از روش شبکه بولتزمن پایستار جرمی

نویسندگان
1 دانشجوی دکتری
2 استاد دانشگاه تربیت مدرس
3 دانشکده مهندسی مکانیک دانشگاه تهران
چکیده
یک مدل شبکه بولتزمن دوفازی قدرتمند با قابلیت مدلسازی نسبت چگالی بالا برای شبیه‌سازی برخورد حباب به مانع متخلخل به‌کار گرفته شده است که می‌تواند جریان دوفازی مخلوط نشدنی با نسبت چگالی 1000 را با بقای جرم بسیار مطلوب شبیه‌سازی کند. در این مقاله با مدلسازی مانع در دامنه حل جریان دوفازی، نحوه تغییرات توابع توزیع در دیواره‌ها و گوشه‌های مانع بیان شده، نحوه اعمال شرط مرزی ترشوندگی سطح بر روی مانع تشریح گردیده و نشان داده شده است که با وجود اعمال شرط مرزی مربوط به مانع نیز بقای جرم مدل به‌شکل مطلوبی حفظ می‌شود. پس از ارزیابی دقت و قابلیت مدل و صحت پیاده‌سازی آن ابتدا با چند مساله پایه، برخورد یک حباب بالارونده با نسبت چگالی 1000 به یک مانع متخلخل مسطح شبیه‌سازی شده و تاثیر زاویه تماس، عدد اتوس و نسبت تخلخل و در تغییر شکل و نحوه عبور یا عدم عبور حباب از مانع به‌صورت سیستماتیک مورد بررسی قرار گرفته است. در برخورد حباب به مانع متخلخل با نسبت تخلخل پایین، در صورتی که زاویه تماس کم باشد حباب در زیر مانع باقی مانده و به سکون می‌رسد. در زوایای تماس بالا، خاصیت آب‌گریزی سطح مانع، حباب را به داخل تخلخل‌ها می‌کِشد و حباب به سطح بالای مانع منتقل می‌شود و بر روی سطح مانع به سکون می‌رسد. در سایر موارد حباب به طور کامل از مانع عبور می‌کند و از آن جدا می‌شود. خطای بقای جرم در عبور حباب از مانع متخلخل از مرتبه 11-10 است که بسیار مطلوب ارزیابی می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical simulation of rising bubble striking a porous obstacle using mass-conserving lattice Boltzmann method

نویسندگان English

Mohsen Ghasemi 1
mohamadreza ansari 2
Mihammad Hasan Rahimiyan 3
2 -
3 Mechanical Engineering Faculty, Tehran University
چکیده English

A powerful two-phase lattice Boltzmann model with the ability of modeling high density ratio is applied to simulate a rising bubble striking a porous obstacle. This model is able to simulate immiscible two-phase flow with density ratio of 1000 and result in desirable mass conservation. In present research, a porous obstacle is posed in two-phase flow domain, bounce back and wetting boundary conditions at walls and corners is discussed and showed that after implementation of obstacle boundary conditions, mass conservation of the model is preserved. Accuracy and ability of the model firstly examined by some basic problems. Next, striking of a rising bubble with 1000 density ratio to a porous obstacle is simulated and the effect of contact angle, Eotvos number and porosity ratio in deformation and passing of the bubble from the obstacle is investigated systematically. Different porosity ratios and contact angles, result in different bubble behavior striking the porous obstacle; In low porosity ratios and low contact angles, the bubble remains below the obstacle. At high contact angles, the hydrophobicity of the obstacle surface draws the bubble into the porosities, and the bubble moves to the top of the obstacle and stays on the top surface of the obstacle. In other cases, the bubble completely passes through the obstacle and separates it. Mass conservation error of bubble passing the porous obstacle is of order of 10-11 which is completely desirable.

کلیدواژه‌ها English

two-phase flow
rising bubble
porous obstacle
bubble striking
mass-conserving lattice Boltzmann method
1. R. Clift, J. R. Grace, M. E. Weber, Bubbles, drops, and particles, New York: AcademicPress; 1978.
2. D. Bhaga, M. E. Weber, Bubbles in viscous liquids: shapes, wakes and velocities, JFluid Mech, Vol. 105, pp. 61-85, 1981.
3. J. R.Grace, T. Wairegi, T. H. Nguyen, Shapes and velocities of single drops and bubbles moving freely through immiscible liquids, Trans. Inst. Chem. Eng, Vol. 54.3, pp. 167-173, 1976.
4. K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Physical Review A, Vol. 43, No. 8, p. 4320, 1991.
5. D. Grunau, S. Chen, K. Eggert, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A, Vol. 5, No. 10, p. 2557, 1993.
6. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E,Vol. 47, No. 3, p. 1815, 1993.
7. X. Shan, H. Chen, Simulation of non-ideal gases and liquid–gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, Vol. 49, p. 2941, 1994.
8. X. Shan, G. D. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys., Vol. 81, pp. 379-393, 1995.
9. X. Shan, G. Doolen, Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev. E, Vol. 54, No. 4, p. 3614, 1996.
10. M. R. Swift, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., Vol. 75, No. 5, p. 830, 1995.
11. M. R. Swift, E. Orlandini, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulation of liquid–gas and binary-fluid system, Phys. Rev. E,Vol. 54, No. 5, p. 5041, 1996.
12. E. Orlandini, M. R. Swift, J. R. Yeomans, A Lattice Boltzmann Model ofBinary-Fluid Mixtures, Europhys. Lett., Vol. 32, No. 6, pp. 463-468, 1995.
13. X. He, X. Shan, G. D. Doolen, A discrete Boltzmann equation model fornon-ideal gases, Phys. Rev. E, Vol. 57, No. 1, p. R13, 1998.
14. X. He, S. Chen, R. Zhang, A lattice Boltzmann scheme for incompressiblemultiphaseflow and its application in simulation of Rayleigh–Taylor instability, J.Comput. Phys., Vol. 152, No. 2, pp. 642–663, 1999.
15. X. He, R. Zhang, S. Chen, G. D. Doolen, On three-dimensional Rayleigh–Taylor instability, Phys. Fluids, Vol. 11, No. 5, p. 1143, 1999.
16. R. Zhang, X. He, S. Chen, Interface and surface tension in incompressiblelattice Boltzmann multiphase model, Comput. Phys. Commun., Vol. 129, pp. 121–130, 2000.
17. R. Zhang, X. He, G. Doolen, S. Chen, Surface tension effects ontwo-dimensional two-phase Kelvin-Helmholtz instabilities, Advances in Water Resources, Vol. 24, pp. 461-478, 2001.
18. R. Zhang, Lattice Boltzmann approach for immiscible multiphase flow, Ph.D. thesis, University of Delaware, 2000.
19. T. Inamuro, T. Ogata, S. Tajima, N. Konishi,lattice Boltzmann method for incompressible two-phase flows with large density differences, J.Com. Phy., Vol. 198, pp. 628–644, 2004.
20. T. Lee, C.L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of in compressible two-phase flows at high density ratio, J.Com. Phy.,Vol. 206, pp. 16–47, 2005.
21. H.W. Zheng, C. Shu, Y.T. Chew, A lattice Boltzmann for multiphase flows with large density ratio, J.Com. Phy., Vol. 218, pp. 353–371, 2006.
22. T. Lee, P.F. Fischer, Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases, Phys. Rev. E, Vol. 74, p.046709, 2006.
23. T. Lee, L. Liu, Wall boundary conditions in the lattice Boltzmann equation method for non-ideal gases, Physical Review E, Vol. 78, No. 017702, 2008.
24. T. Lee, Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids, Comput. Math.Appl. 58 (2009) 987–994.
25. T. Lee, L. Liu, Lattice Boltzmann simulationsof micron-scale drop impact on dry surfaces,J.Com. Phy., Vol. 229, pp. 8045-8063, 2010.
26. L. Amaya-Bower, T. Lee, Single bubble rising dynamics for moderate Reynolds number using LatticeBoltzmann Method, Computers & Fluids,Vol. 39, pp. 1191–1207, 2010.
27. L. Amaya-Bower, T. Lee, Numericalsimulationofsinglebubblerisinginverticalandinclinedsquare channel usinglatticeBoltzmannmethod, Chemical Engineering Science, Vol. 66, pp. 935–952, 2011.
28. M. Taghilou, M. H. Rahimian, Investigation of two-phase flow in porous media using latticeBoltzmann method, Computers and Mathematics with Applications, Vol. 67 pp. 424–436, 2014.
29. H. M. Mirzaie Daryan, M. H. Rahimian, Numerical Simulation of Single BubbleDeformation in Straight Duct and 90˚ BendUsing Lattice Boltzmann Method, Journal of Electronics Cooling and Thermal Control, Vol.5, pp. 89-118, 2015.
30. R. Haghan., M. H. Rahimian, Four different types of a single drop dripping down a hole undergravity by lattice Boltzmann method, Journal of Computational Applied Mechanics, Vol. 47, No. 1, pp 89-98, 2016.
31. L. Baroudi, M. Kawaji, T. Lee, Effects of initial conditions on the simulation of inertial coalescence of two drops. Computers & Mathematics with Applications, Vol. 67, No 2, pp 282-289, 2014.
32. R. Zhang, Multiscale liquid drop impact on wettable and textured surfaces. Physics of Fluids, Vol. 26, No. 8, 2014.
33. K. W. Connington, T. Lee, and J.F. Morris, Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid - gas -particle systems. Journal of Computational Physics, Vol. 283, pp. 453-477, 2015.
34. K. W. Connington, Lattice Boltzmann simulations of particle-laden liquid bridges: effects of volume fraction and wettability. International Journal of Multiphase Flow, Vol. 76, pp. 32-46, 2015.
35. S. Farokhirad, J. F. Morris, T. Lee, Coalescence-induced jumping of droplet: Inertia and viscosity effects. Physics of Fluids, Vol. 27, No. 10, 2015.
36. M. Ashna, M.H. Rahimian, A. Fakhari, Extended lattice Boltzmann scheme for droplet combustion. Physical Review E, Vol. 95, No. 5, 2017.
37. M. Ashna, M.H. Rahimian, LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime, International Journal of Heat and Mass Transfer, 109, pp.520-536, 2017.
38. E. Reyhanian, M.H. Rahimian, S.F. Chini, Investigation of 2D drop evaporation on a smooth and homogeneous surface using Lattice Boltzmann method. International Communications in Heat and Mass Transfer, 89, pp.64-72, 2017.
39. H. Amirshaghaghi, M.H. Rahimian, H. Safari, M. Krafczyk, Large Eddy Simulation of liquid sheet breakup using a two-phase lattice Boltzmann method, Computers & Fluids, 160, pp.93-107, 2018.
40. A. Fakhari, M. Geier,T. Lee,A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, Journal of Computational Physics, Vol. 315, pp.434-457, 2016.
41. P.-H. Chiu, Y.-T. Lin, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys. Vol. 230, pp 185–204, 2011.
42. M. Geier, A. Fakhari, T. Lee, Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, Vol. 91, 2015.
43. P. K. Jain, A. Tentner, Rizwan-uddin, A lattice Boltzmann framework to simulate boiling water reactor core hydrodynamics, Computers and Mathematics with Applications, Vol. 58, pp. 975-986, 2009.