[1] S. Delfani, M. Karami, and M. A. Bahabadi, Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors, International Journal of Nano Dimension, vol. 7, p. 85, 2016.
[2] J. E. Minardi and H. N. Chuang, Performance of a “black” liquid flat-plate solar collector, Solar Energy, vol. 17, pp. 179-183, 1975.
[3] M. Abdelrahman, P. Fumeaux, and P. Suter, Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation, Solar Energy, vol. 22, pp. 45-48, 1979.
[4] M. J. Muhammad, I. A. Muhammad, N. A. C. Sidik, M. N. A. W. M. Yazid, R. Mamat, and G. Najafi, The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review, Renewable and Sustainable Energy Reviews, vol. 63, pp. 226-236, 9, 2016.
[5] V. Trisaksri and S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable Energy Reviews, vol. 11, pp. 512-523, 4, 2007.
[6] W. Daungthongsuk and S. Wongwises, A critical review of convective heat transfer of nanofluids, Renewable and Sustainable Energy Reviews, vol. 11, pp. 797-817, 6, 2007.
[7] L. Godson, B. Raja, D. M. Lal, and S. Wongwises, Enhancement of heat transfer using nanofluids—an overview, Renewable and sustainable energy reviews, vol. 14, pp. 629-641, 2010.
[8] M. Karami, M. A. Bahabadi, S. Delfani, and A. Ghozatloo, A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector, Solar Energy Materials and Solar Cells, vol. 121, pp. 114-118, 2014.
[9] M. Karami, M. Raisee, S. Delfani, M. A. Akhavan Bahabadi, and A. M. Rashidi, Sunlight absorbing potential of carbon nanoball water and ethylene glycol-based nanofluids, Optics and Spectroscopy, vol. 115, pp. 400-405, 2013.
[10] M. Karami, M. Akhavan-Behabadi, M. R. Dehkordi, and S. Delfani, Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation, Solar Energy Materials and Solar Cells, vol. 144, pp. 136-142, 2016.
[11] M. Vakili, S. Hosseinalipour, S. Delfani, and S. Khosrojerdi, Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors, Solar Energy Materials and Solar Cells, vol. 152, pp. 187-191, 2016.
[12] M. Milanese, G. Colangelo, A. Cretì, M. Lomascolo, F. Iacobazzi, and A. de Risi, Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems–Part II: ZnO, CeO 2, Fe 2 O 3 nanoparticles behavior, Solar Energy Materials and Solar Cells, vol. 147, pp. 321-326, 2016.
[13] H. Zhang, H.-J. Chen, X. Du, G. Lin, and D. Wen, Dependence of Photothermal Conversion Characteristics on Different Nanoparticle Dispersions, Journal of nanoscience and nanotechnology, vol. 15, pp. 3055-3060, 2015.
[14] H. Tyagi, P. Phelan, and R. Prasher, Predicted efficiency of a nanofluid-based direct absorption solar receiver, in ASME 2007 energy sustainability conference, 2007, pp. 729-736.
[15] T. Otanicar, R. A. Taylor, P. E. Phelan, and R. Prasher, Impact of size and scattering mode on the optimal solar absorbing nanofluid, in ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, 2009, pp. 791-796.
[16] S. Parvin, R. Nasrin, and M. Alim, Heat transfer and entropy generation through nanofluid filled direct absorption solar collector, International Journal of Heat and Mass Transfer, vol. 71, pp. 386-395, 2014.
[17] S. Parvin, S. Ahmed, and R. Chowdhury, Effect of solar irradiation on forced convective heat transfer through a nanofluid based direct absorption solar collector, AIP Conference Proceedings, 2017, p. 020067.
[18] M. Mohan and A. Sajeeb, Improving the efficiency of DASC by adding CeO2/CuO hybrid nanopartivles in water, International Journal of Nanoscience, 2017.
[19] P. K. Das, A. K. Santra, and R. Ganguly,Performance analysis of direct absorption solar collector using multiphase model, 23rd National Heat and Mass Transfer Conference and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference, 2015 17-20 December, 2015, Thiruvananthapuram, India.
[20] M. Karami, M. Akhavan-Bahabadi, S. Delfani, and M. Raisee, Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications, Renewable and Sustainable Energy Reviews, vol. 52, pp. 793-801, 2015.
[21] M. Vakili, S. Hosseinalipour, S. Delfani, S. Khosrojerdi, and M. Karami, Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems, Solar Energy, vol. 131, pp. 119-130, 2016.
[22] S. Delfani, M. Karami, and M. Akhavan-Behabadi, Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid, Renewable Energy, vol. 87, pp. 754-764, 2016.
[23] M. Karami, S. M. Hosseini Pakdel, Sh. Delfani, M. A. Akhavan-Behabadi, Application of Fe3O4/Silica hybrid nanofluid as working fluid of direct absorption solar collector, Modares Mechanical Engineering, Vol. 18, No. 02, pp. 37-44, 2018 (in Persian)
[24] S. S. Meibodi, A. Kianifar, O. Mahian, and S. Wongwises, Second law analysis of a nanofluid-based solar collector using experimental data, Journal of Thermal Analysis and Calorimetry, vol. 126, pp. 617-625, 2016.
[25] T. B. Gorji and A. Ranjbar, Thermal and exergy optimization of a nanofluid-based direct absorption solar collector, Renewable Energy, vol. 106, pp. 274-287, 2017.
[26] S. Fischer, W. Heidemann, H. Müller-Steinhagen, B. Perers, P. Bergquist, and B. Hellström, Collector test method under quasi-dynamic conditions according to the European Standard EN 12975-2, Solar Energy, vol. 76, pp. 117-123, 2004.
[27] W. Yu and H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications, Journal of Nanomaterials, vol. 2012, p. 1, 2012.
[28] B. C. Pak, Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, Vol. 11, No. 2, pp. 151-170, 1998.
[29] H. O'Hanley, J. Buongiorno, T. McKrell, L.-w. Hu, Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry, Advances in Mechanical Engineering, 2012.
[30] G. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of fluid mechanics, vol. 83, pp. 97-117, 1977.