[1] T. G. Karrison, D. J. Ferguson, P. Meier, Dormancy of Mammary Carcinoma after Mastectomy, National Cancer Institute, 91, No. 1, pp.80–85, 1999.
[2] D. Weckermann, P. Mueller, F. Wawroschek, R. Harzmann, G. Riethmueller, G. Schlimok, Disseminated Cytokeratin Positive Tumour Cells in the Bone Marrow of Patients with Prostate Cancer: Detection and Prognostic value, Urology, Vol. 166, No. 2, pp.699–703; 2001.
[3] J. J. Casciari, M. M. Graham, J. S. Rasey, A modeling approach for quantifying tumor hypoxia with [F-18] fluoromisonidazole PET time-activity data, Medical Physics, Vol. 22, No. 7, pp. 1127-1139, 1995.
[4] S. S. Kety, The theory and application of the exchange of inert gas at the lungs and tissues, Pharmacological Reviews, Vol.3, No. 1, pp. 1–41, 1951.
[5] L. Sokoloff, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. Cerebral Blood Flow Metabolism, Vol.1 No. 1, pp.7–36.
[6] M. E. Phelps, E. J. Hoffman, N. A. Mullani, M. M. Ter-Pogossian, Application of annihilation coincidence detection to transaxial reconstruction tomography, Nuclear Medicine,Vol. 16, No. 3, pp. 210–224, 1975.
[7] L. Sokoloff, C. B. Smith, Basic principles underlying radioisotopic methods for assay of biochemical processes in vivo, In: Greitz T, Ingvar DH, Wid_en L, editors. The metabolism of the human brain studied with positron emission tomography, pp. 123-148, 1983.
[8] G. Blomqvist, S. Pauli, L. Farde, L. Eriksson, A. Persson, C. Halldin , Dynamic models of reversible ligand binding. In: Clinical research and clinical diagnosis, (Beckers C, Goffinet A, Bol A,eds), Dardrecht, The Netherlands: Kluwer Academic Publishers, pp. 35–44, 1989.
[9] V. J. Cunningham, S. P. Hume, G. R. Price, R. G. Ahier, J. E. Cremer, A. K. Jones, Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro, Cerebral Blood Flow, Vol. 11, No. 1, pp. 1–9, 1991.
[10] A. A. Lammertsma, C. J. Bench, S. P. Hume, S. Osman, K. Gunn, D. J. Brooks, R. S. Frackowiak, Comparison of methods for analysis of 492clinical [11C] raclopride studies, Cerebral Blood Flow, Vol. 16, No. 1, pp. 42–52,1996.
[11] D. Thorwarth, S. M. Eschmann, F. Paulsen, M. Alber, A kinetic model for dynamic [18F]-Fmiso PET data tobanalyse tumour hypoxia, Physics in Medicine and Biology, Vol. 50, No. 10, pp. 2209–2224, 2005.
[12] W. Wang, J. Georgi, S. A. Nehmeh, M. Narayanan, T. Paulus, M. O. Bal, J. Donoghue, P. B. Zanzonico, C. R. Schmidtlein, N. Y. Lee, J. L. Humm, Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging, Physics in Medicine and Biology, Vol. 54, No. 10, pp. 3083-3099, 2010.
[13] C. Cobelli, D. Foster, G. Toffolo, Tracer Kinetics in Biomedical Research, Kluwer Academic Publishers, pp. 77-79, 2002.
[14] J. D. Flessner, R. L. Dedrick, R. G. Blasberg , A distributed model of peritoneal-plasma transport: tissue concentration gradients, Physiology- Renal Physiology, Vol. 248, No. 3, pp. F425–F435, 1985.
[15] M. F. D. Flessner, R. L. Schultz, A distributed model of peritoneal-plasma transport: theoretical considerations, Physiology- Renal Physiology, Vol. 246, No. 4, pp. R597–R607, 1984.
[16] R. K. Jain, Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy, Science,Vol. 307, No. 5706, pp. 58–62, 2005.
[17] R. K. Jain, R. T. Tong, L. L. Munn, Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model., Cancer Research., Vol. 67, No. 6, pp. 2729–2735, 2007.
[18] C. H. Wang, J. Li, Three-dimensional simulation of IgG delivery to tumors, Chemical Engineering Science, Vol. 53, No. 20, pp. 3579–3600. 1998.
[19] W. H. K. Tan, F. Wang, T. Lee, C-H. Wang, Computer simulation of the delivery of etanidazole to brain tumor from PLGA wafers: comparison between linear and double burst release systems, Biotechnology and Bioengineering, Vol. 82, No. 3, pp. 278–288, 2003.
[20] C. C. Wang, J. Li, C. S. Teo, T. Lee, The delivery of BCNU to brain tumors, Control Release, Vol. 61, No. 1-2, pp. 21–41, 1999.
[21] J. Zhao, Salmon H., Sarntinoranont M., Effect of heterogeneous vasculature on interstitial transport within a solid tumor, Microvascular Research, Vol. 73, pp. 224–236.
[22] D. Y. Arifin, K. Y. T. Lee, C-H. Wang, Chemotherapeutic drug transport to brain tumor, Control Release, Vol. 137, No. 3, pp. 203–210, 2009.
[23] G. L. Pishko, G. W. Astary, T. H. Mareci, M. Sarntinoranont, Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity, Annals of Biomedical Engineering, Vol. 39, No. 9, pp. 2360–2373, 2011.
[24] M. Soltani, P. Chen, Effect of tumor shape and size on drug delivery to solid tumors, Biological Engineering,Vol. 6, pp. e20344, 2012.
[25] M. Soltani, M. Sefidgar, H. Bazmara, S. Sheikhbahaei, C. Marcus, S. Ashrafinia, R. Subramaniam, A. M. Rahmim, Spatiotemporal Distribution of the FDG PET Tracer in Solid Tumors: Contributions of Diffusion and Convection Mechanisms, Medical Physics, Vol. 42, pp.3660.
[26] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M. Goldbaum, Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Trasactions on Medical Imaging, Vol. 8, No. 3, pp. 263–269, 1989.
[27] B. Zhang, L. Zhang, F. Karray, Retinal vessel extraction by matched filter with first-order derivative of Gaussian, Computers in Biology and Medicine, Vol. 40, No. 4, pp. 438– 445, 1994.
[28] J. Malek, A. T. Azar, Impact of retinal vascular tortuosity on retinal circulation, Neural Computing and Applications, Vol. 26, pp. 25-40, 2015.
[29] M. Sofka and C. V. Stewar, Retinal vessel extraction using multiscale matched filters confidence and edge measures, Technical Reports, Department of Computer Science, Rensselaer Polytechnic Institute, 2005.
[30] R. M. Rangayyan, F. Oloumi, P. Eshghzadeh-Zanjani, F. J. Ayres, Detection of blood vessels in the retina using Gabor filters, The 20th Canadian Conference on Electrical and Computer Engineering (CCECE ’07), pp. 717– 720, Vancouver, Canada.
[31] T. Pock, Janko , R. Beichel, H. Bischof, Multiscale medialness for robust segmentation of 3D tubular structures, The 10th Computer Vision with Workshop, The Austrian Science Fund (FWF) under the grants P17066-N04, 2005.
[32] N. Strisciuglio, G. Azzopardi, M. Vento, N. Petkov, Multiscale blood vessel delineation using B-COSFIRE filters, International Conference on Computer Analysis of Images and Patterns, Springer, pp. 300-312, Cham, 2015.
[33] D. Monnich, E. G. C. Troost, J. H. A. M. Kaanders, W. J. G. Oyen, M. Alber, D. Thorwarth, Modelling and simulation of [18F] fluoromisonidazole dynamics based on histology-derived microvessel maps, Institute of Physics in Medicine and Biology, Vol. 54, pp. 2045-2057, 2011.
[34] D. Monnich, E. G. C. Troost, J. H. A. M. Kaanders, W. J. G. Oyen, M. Alber, D. Thorwarth, Modelling and simulation of the influence of acute and chronic hypoxia on [18F] fluoromisonidazole PET imaging, Physics in Medicine and Biology, Vol. 57, No. 6, pp. 1675–1684, 2012.
[35] D. Monnich, E. G. C. Troost, J. H. A. M. Kaanders, W. J. G. Oyen, M. Alber, D. Thorwarth, Correlation between tumor oxygenation and 18F-Fluoromisonidazole PET data simulated based on microvasculature images, Acta Ancologica, Vol. 52, pp. 1308-1313 2013.
[36] M. Soltani, M. Sefidgar, M. E. Casey, R. L. Wahl, R. M. Subramaniam, A. Rahmimp , Comprehensive Modeling of the Spatiotemporal Distribution of PET Tracer Uptake in Solid Tumors based on the Convection DiffusionReaction Equation, Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE, pp. 1-12, 2014.
[37] M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, Theoretical biology, Vol. 259, No. 3, pp. 405-422, 2009.
[38] K. Zuiderveld, Contrast limited adaptive histogram equalization, In Graphics gems IV, pp. 474-485. Academic Press Professional, Inc., 1994.
[39] M. Sefidgar, M. Soltani, H. Bazmara, M. Mousavi, M, Bazargan, A. Elkamel, Interstitial Flow in Cancerous Tissue: Effect of Considering Remodeled Capillary Network, Tissue Science and Engineering, Vol. 4, pp. 2, 2014.
[40] M. Sefidgar, M. Soltani, K. Raahemifar, H. Bazmara, M. Nayinian, M. Bazargan, Effect of tumor shape, size and tissue transport properties on drug delivery to solid tumors, Biological Engineering, Vol. 8, pp. 12, 2014.
[41] M. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, M. Mousavi Naeenian, Numerical modeling of drug delivery in a dynamic solid tumor microvasculature, MVR, 2015.
[42] H. Backes, M. Walberer, H. Endepols, B. Neumaier, R. Graf, K. Wienhard et al., Whishkers area as extracerebral reference tissue for quantification of rat brain metabolism using (18) F-FDG PET: application to focal cerebral ischemia, Nuclear Medicine, Vol. 52, No. 8, pp. 1252-1260, 2011.
[43] S. H. Choi, J. C. Paeng, C. H. Sohn, J. R. Pagsisihan, Y. J. Kim et al., Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high value diffusion MRI in head and neck cancer, Nuclear Medicine., Vol. 52, pp. 1056-1-62, 2011.
[44] C. J. Kelly, M. Brady, A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data, Physics in Medicine and Bioogy., Vol. 51, pp. 5859-5873, 2006.
[45] H. C. Er, A. Erden, N. O. Kucuk, E. Gecim, Correlation of minimum diffusion coefficient with maximum standardized uptake of flurodeoxyglucose PET-CT in patients with rectal adenocarcinoma, Diagnostic and Interventional Radiology, Vol. 20, No. 2, pp. 105-109, 2014.