مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدلسازی و شبیه سازی تصویر محور جریان ردیاب اف.دی.جی در بافت سرطانی با بررسی شبکه مویرگی

نویسندگان
1 مهندسی مکانیک گرایش تبدیل انرژی، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران
2 عضو هیئت علمی دانشگاه صنعتی خواجه نصیرالدین طوسی
3 دانشجو کارشناسی، مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران
4 استادیار دانشگاه آزاد اسلامی واحد پردیس
چکیده
در مدلسازی ریاضی رسانش دارو و جریان ردیاب، می توان گفت که دشوارترین بخش، ترتیب اثر دادن پیچیدگی شبکه مویرگی در هنگام شبیه‌سازی می‌باشد. به دلیل نقش کلیدی و مهم جریان خون در رشد تومور و نیز انتقال ردیاب به بافت‌های نرمال و سرطانی، مطالعات بسیاری به منظور بررسی تشکیل شبکه رگ و جریان خون در اطراف تومور انجام گردیده است. در این پژوهش، با استفاده از یک تصویر ورودی گرفته‌شده از یک شبکه مویرگی به ساخت هندسه‌ی حل دو‌بعدی و همچنین به مدل‌سازی عددی جریان ردیاب اف.دی.جی پرداخته شد. مراحل ساخت هندسه ی حل شامل پیش‌پردازش و پس‌پردازش تصویر رنگی ورودی به منظور آماده‌سازی و جدا سازی بخش شامل مویرگ‌ها از پس‌زمینه تصویر می‌باشد. پس از ساخت هندسه دامنه‌ی از تصویر پردازش شده، با حل همزمان جریان خون در مویرگها و جریان مایع میان بافتی درون بافت های نرمال و سرطانی، توزیع فشار و سرعت در شبکه مویرگی و بافت های نرمال و سرطانی به دست می‌آید و به عنوان ورودی برای مدل‌سازی عددی جریان ردیاب اف.دی.جی مورد استفاده قرار می‌گیرد. در نهایت با استفاده از روش مدل‌سازی عددی بر مبنای معادلات جابجایی-پخش-واکنش، توزیع ردیاب اف.دی.‌جی در بافت های نرمال و سرطانی در زمان‌های مختلف به دست می‌آید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Image-based computational modeling of the FDG tracer in a solid tumor with a consideration of capillaries network

نویسندگان English

Niloofar Fasaeiyan1 1
Madjid Soltani 2
Erfan Ta’atizadeh 3
1 Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
3 Mechanical engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده English

In a computational modeling of drug delivery and PET tracers to cancer tissues, the most difficult part is a consideration of a complexity of capillaries network. Because of the key role of blood flow in tumor feeding and growth that also carrying radiotracer into both normal and cancerous tissues, there are various studies have been done on the formation of new blood vessels and blood flow around a tumor. In this work, we used an image of a complex capillaries network to simulate FGD tracer distribution within both normal and cancerous tissues. Firstly, one RGB image was imported as an input image which consisted of the capillaries network and has been processed and made ready for creating 2D geometry from it. The creation of 2D geometry from the input image is consisted two areas: Pre-processing and Post-Processing the input image for preparation of it for the creation geometry by capturing the capillaries from a background of whole of the picture. In the next stage, with a usage of the achieved geometry and by coupling blood flow and interstitial flow, pressure and velocity distribution in the capillaries and both tumor and normal tissues were accomplished. Finally, by applying CDR (Convection-Diffusion-Reaction) equations for FDG tracer, distribution of it was acquired within the whole normal and cancerous domain. Observing FDG tracer CDR modeling helped us find tracer distribution with both time and space.

کلیدواژه‌ها English

PET tracer
FDG tracer
Solid tumor
Capillaries network
Image processing
Convection-Diffusion-Reaction equations
[1] T. G. Karrison, D. J. Ferguson, P. Meier, Dormancy of Mammary Carcinoma after Mastectomy, National Cancer Institute, 91, No. 1, pp.80–85, 1999.
[2] D. Weckermann, P. Mueller, F. Wawroschek, R. Harzmann, G. Riethmueller, G. Schlimok, Disseminated Cytokeratin Positive Tumour Cells in the Bone Marrow of Patients with Prostate Cancer: Detection and Prognostic value, Urology, Vol. 166, No. 2, pp.699–703; 2001.
[3] J. J. Casciari, M. M. Graham, J. S. Rasey, A mod‌eling approach for quantifying tumor hypoxia with [F-18] fluoromisonidazole PET time-activity data, Medical Physics, Vol. 22, No. 7, pp. 1127-1139, 1995.
[4] S. S. Kety, The theory and application of the exchange of inert gas at the lungs and tissues, Pharmacological Reviews, Vol.3, No. 1, pp. 1–41, 1951.
[5] L. Sokoloff, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. Cerebral Blood Flow Metabolism, Vol.1 No. 1, pp.7–36.
[6] M. E. Phelps, E. J. Hoffman, N. A. Mullani, M. M. Ter-Pogossian, Application of annihilation coincidence detection to transaxial reconstruction tomography, Nuclear Medicine,Vol. 16, No. 3, pp. 210–224, 1975.
[7] L. Sokoloff, C. B. Smith, Basic principles underlying radioisotopic methods for assay of biochemical processes in vivo, In: Greitz T, Ingvar DH, Wid_en L, editors. The metabolism of the human brain studied with positron emission tomography, pp. 123-148, 1983.
[8] G. Blomqvist, S. Pauli, L. Farde, L. Eriksson, A. Persson, C. Halldin , Dynamic models of reversible ligand binding. In: Clinical research and clinical diagnosis, (Beckers C, Goffinet A, Bol A,eds), Dardrecht, The Netherlands: Kluwer Academic Publishers, pp. 35–44, 1989.
[9] V. J. Cunningham, S. P. Hume, G. R. Price, R. G. Ahier, J. E. Cremer, A. K. Jones, Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro, Cerebral Blood Flow, Vol. 11, No. 1, pp. 1–9, 1991.
[10] A. A. Lammertsma, C. J. Bench, S. P. Hume, S. Osman, K. Gunn, D. J. Brooks, R. S. Frackowiak, Comparison of methods for analysis of 492clinical [11C] raclopride studies, Cerebral Blood Flow, Vol. 16, No. 1, pp. 42–52,1996.
[11] D. Thorwarth, S. M. Eschmann, F. Paulsen, M. Alber, A kinetic model for dynamic [18F]-Fmiso PET data tobanalyse tumour hypoxia, Physics in Medicine and Biology, Vol. 50, No. 10, pp. 2209–2224, 2005.
[12] W. Wang, J. Georgi, S. A. Nehmeh, M. Narayanan, T. Paulus, M. O. Bal, J. Donoghue, P. B. Zanzonico, C. R. Schmidtlein, N. Y. Lee, J. L. Humm, Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging, Physics in Medicine and Biology, Vol. 54, No. 10, pp. 3083-3099, 2010.
[13] C. Cobelli, D. Foster, G. Toffolo, Tracer Kinetics in Biomedical Research, Kluwer Academic Publishers, pp. 77-79, 2002.
[14] J. D. Flessner, R. L. Dedrick, R. G. Blasberg , A distributed model of peritoneal-plasma transport: tissue concentration gradients, Physiology- Renal Physiology, Vol. 248, No. 3, pp. F425–F435, 1985.
[15] M. F. D. Flessner, R. L. Schultz, A distributed model of peritoneal-plasma transport: theoretical considerations, Physiology- Renal Physiology, Vol. 246, No. 4, pp. R597–R607, 1984.
[16] R. K. Jain, Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy, Science,Vol. 307, No. 5706, pp. 58–62, 2005.
[17] R. K. Jain, R. T. Tong, L. L. Munn, Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model., Cancer Research., Vol. 67, No. 6, pp. 2729–2735, 2007.
[18] C. H. Wang, J. Li, Three-dimensional simulation of IgG delivery to tumors, Chemical Engineering Science, Vol. 53, No. 20, pp. 3579–3600. 1998.
[19] W. H. K. Tan, F. Wang, T. Lee, C-H. Wang, Computer simulation of the delivery of etanidazole to brain tumor from PLGA wafers: comparison between linear and double burst release systems, Biotechnology and Bioengineering, Vol. 82, No. 3, pp. 278–288, 2003.
[20] C. C. Wang, J. Li, C. S. Teo, T. Lee, The delivery of BCNU to brain tumors, Control Release, Vol. 61, No. 1-2, pp. 21–41, 1999.
[21] J. Zhao, Salmon H., Sarntinoranont M., Effect of heterogeneous vasculature on interstitial transport within a solid tumor, Microvascular Research, Vol. 73, pp. 224–236.
[22] D. Y. Arifin, K. Y. T. Lee, C-H. Wang, Chemotherapeutic drug transport to brain tumor, Control Release, Vol. 137, No. 3, pp. 203–210, 2009.
[23] G. L. Pishko, G. W. Astary, T. H. Mareci, M. Sarntinoranont, Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity, Annals of Biomedical Engineering, Vol. 39, No. 9, pp. 2360–2373, 2011.
[24] M. Soltani, P. Chen, Effect of tumor shape and size on drug delivery to solid tumors, Biological Engineering,Vol. 6, pp. e20344, 2012.
[25] M. Soltani, M. Sefidgar, H. Bazmara, S. Sheikhbahaei, C. Marcus, S. Ashrafinia, R. Subramaniam, A. M. Rahmim, Spatiotemporal Distribution of the FDG PET Tracer in Solid Tumors: Contributions of Diffusion and Convection Mechanisms, Medical Physics, Vol. 42, pp.3660.
[26] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, M. Goldbaum, Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Trasactions on Medical Imaging, Vol. 8, No. 3, pp. 263–269, 1989.
[27] B. Zhang, L. Zhang, F. Karray, Retinal vessel extraction by matched filter with first-order derivative of Gaussian, Computers in Biology and Medicine, Vol. 40, No. 4, pp. 438– 445, 1994.
[28] J. Malek, A. T. Azar, Impact of retinal vascular tortuosity on retinal circulation, Neural Computing and Applications, Vol. 26, pp. 25-40, 2015.
[29] M. Sofka and C. V. Stewar, Retinal vessel extraction using multiscale matched filters confidence and edge measures, Technical Reports, Department of Computer Science, Rensselaer Polytechnic Institute, 2005.
[30] R. M. Rangayyan, F. Oloumi, P. Eshghzadeh-Zanjani, F. J. Ayres, Detection of blood vessels in the retina using Gabor filters, The 20th Canadian Conference on Electrical and Computer Engineering (CCECE ’07), pp. 717– 720, Vancouver, Canada.
[31] T. Pock, Janko , R. Beichel, H. Bischof, Multiscale medialness for robust segmentation of 3D tubular structures, The 10th Computer Vision with Workshop, The Austrian Science Fund (FWF) under the grants P17066-N04, 2005.
[32] N. Strisciuglio, G. Azzopardi, M. Vento, N. Petkov, Multiscale blood vessel delineation using B-COSFIRE filters, International Conference on Computer Analysis of Images and Patterns, Springer, pp. 300-312, Cham, 2015.
[33] D. Monnich, E. G. C. Troost, J. H. A. M. Kaanders, W. J. G. Oyen, M. Alber, D. Thorwarth, Modelling and simulation of [18F] fluoromisonidazole dynamics based on histology-derived microvessel maps, Institute of Physics in Medicine and Biology, Vol. 54, pp. 2045-2057, 2011.
[34] D. Monnich, E. G. C. Troost, J. H. A. M. Kaanders, W. J. G. Oyen, M. Alber, D. Thorwarth, Modelling and simulation of the influence of acute and chronic hypoxia on [18F] fluoromisonidazole PET imaging, Physics in Medicine and Biology, Vol. 57, No. 6, pp. 1675–1684, 2012.
[35] D. Monnich, E. G. C. Troost, J. H. A. M. Kaanders, W. J. G. Oyen, M. Alber, D. Thorwarth, Correlation between tumor oxygenation and 18F-Fluoromisonidazole PET data simulated based on microvasculature images, Acta Ancologica, Vol. 52, pp. 1308-1313 2013.
[36] M. Soltani, M. Sefidgar, M. E. Casey, R. L. Wahl, R. M. Subramaniam, A. Rahmimp , Comprehensive Modeling of the Spatiotemporal Distribution of PET Tracer Uptake in Solid Tumors based on the Convection DiffusionReaction Equation, Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE, pp. 1-12, 2014.
[37] M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, Theoretical biology, Vol. 259, No. 3, pp. 405-422, 2009.
[38] K. Zuiderveld, Contrast limited adaptive histogram equalization, In Graphics gems IV, pp. 474-485. Academic Press Professional, Inc., 1994.
[39] M. Sefidgar, M. Soltani, H. Bazmara, M. Mousavi, M, Bazargan, A. Elkamel, Interstitial Flow in Cancerous Tissue: Effect of Considering Remodeled Capillary Network, Tissue Science and Engineering, Vol. 4, pp. 2, 2014.
[40] M. Sefidgar, M. Soltani, K. Raahemifar, H. Bazmara, M. Nayinian, M. Bazargan, Effect of tumor shape, size and tissue transport properties on drug delivery to solid tumors, Biological Engineering, Vol. 8, pp. 12, 2014.
[41] M. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, M. Mousavi Naeenian, Numerical modeling of drug delivery in a dynamic solid tumor microvasculature, MVR, 2015.
[42] H. Backes, M. Walberer, H. Endepols, B. Neumaier, R. Graf, K. Wienhard et al., Whishkers area as extracerebral reference tissue for quantification of rat brain metabolism using (18) F-FDG PET: application to focal cerebral ischemia, Nuclear Medicine, Vol. 52, No. 8, pp. 1252-1260, 2011.
[43] S. H. Choi, J. C. Paeng, C. H. Sohn, J. R. Pagsisihan, Y. J. Kim et al., Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high value diffusion MRI in head and neck cancer, Nuclear Medicine., Vol. 52, pp. 1056-1-62, 2011.
[44] C. J. Kelly, M. Brady, A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data, Physics in Medicine and Bioogy., Vol. 51, pp. 5859-5873, 2006.
[45] H. C. Er, A. Erden, N. O. Kucuk, E. Gecim, Correlation of minimum diffusion coefficient with maximum standardized uptake of flurodeoxyglucose PET-CT in patients with rectal adenocarcinoma, Diagnostic and Interventional Radiology, Vol. 20, No. 2, pp. 105-109, 2014.