[1] G. Haugstad, Atomic force microscopy: understanding basic modes and advanced applications: John Wiley & Sons, 2012.
[2] G. H. Michler, Electron microscopy, in: Polypropylene, Eds., pp. 186-197: Springer, 1999.
[3] P. C. Braga, D. Ricci, Atomic force microscopy: biomedical methods and applications: Springer Science & Business Media, 2004.
[4] P. Eaton, P. West, Atomic force microscopy: Oxford University Press, 2010.
[5] R. Garcı́a, R. Pérez, Dynamic atomic force microscopy methods, Surface Science Reports, Vol. 47, No. 6, pp. 197-301, 2002/09/01/, 2002.
[6] A. Raman, J. Melcher, R. Tung, Cantilever dynamics in atomic force microscopy, Nano Today, Vol. 3, No. 1, pp. 20-27, 2008.
[7] F. J. Giessibl, Advances in atomic force microscopy, Reviews of modern physics, Vol. 75, No. 3, pp. 949, 2003.
[8] R. García, Amplitude modulation atomic force microscopy: John Wiley & Sons, 2011.
[9] G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Physical review letters, Vol. 56, No. 9, pp. 930, 1986.
[10] A. San Paulo, R. Garcia, High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes, Biophysical Journal, Vol. 78, No. 3, pp. 1599-1605, 2000.
[11] N. Jalili, K. Laxminarayana, A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences, Mechatronics, Vol. 14, No. 8, pp. 907-945, 2004.
[12] A. San Paulo, R. García, Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy, Physical Review B, Vol. 64, No. 19, pp. 193411, 2001.
[13] A. Bahrami, A. H. Nayfeh, On the dynamics of tapping mode atomic force microscope probes, Nonlinear Dynamics, Vol. 70, No. 2, pp. 1605-1617, 2012.
[14] M. A. Mohammadi, K. A. Yousefi, M. E. Maani, M. Karimpour, dynamic behavior analysis atomic force microscopy based on gradient theory, 2016. (In Persianقارسی )
[15] S. Eslami, N. Jalili, A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces, Ultramicroscopy, Vol. 117, pp. 31-45, 2012.
[16] N. Jalili, M. Dadfarnia, D. M. Dawson, A fresh insight into the microcantilever-sample interaction problem in non-contact atomic force microscopy, Journal of Dynamic Systems, Measurement, and Control, Vol. 126, No. 2, pp. 327-335, 2004.
[17] N. Jalili, M. Dadfarnia, D. M. Dawson, Distributed-parameters base modeling and vibration analysis of micro-cantilevers used in atomic force microscopy, in Proceeding of.
[18] A. Bahrami, A. H. Nayfeh, Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase, Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 3, pp. 799-810, 2013.
[19] J. Turner, Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions, Journal of sound and Vibration, Vol. 275, No. 1, pp. 177-191, 2004.
[20] J. A. Turner, Nonlinear vibrations in contact atomic force microscopy, in Proceeding of.
[21] E. M. Abdel-Rahman, A. H. Nayfeh, Contact force identification using the subharmonic resonance of a contact-mode atomic force microscopy, Nanotechnology, Vol. 16, No. 2, pp. 199, 2005.
[22] D. Zulli, A. Luongo, Nonlinear energy sink to control vibrations of an internally nonresonant elastic string, Meccanica, Vol. 50, No. 3, pp. 781-794, 2015.
[23] A. Luongo, D. Zulli, Nonlinear energy sink to control elastic strings: the internal resonance case, Nonlinear Dynamics, Vol. 81, No. 1-2, pp. 425-435, 2015.
[24] R. Garcia, E. T. Herruzo, The emergence of multifrequency force microscopy, Nature nanotechnology, Vol. 7, No. 4, pp. 217-226, 2012.
[25] A. Raman, S. Trigueros, A. Cartagena, A. Stevenson, M. Susilo, E. Nauman, S. A. Contera, Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy, Nature nanotechnology, Vol. 6, No. 12, pp. 809-814, 2011.
[26] R. Vázquez, F. J. Rubio-Sierra, R. W. Stark, Multimodal analysis of force spectroscopy based on a transfer function study of micro-cantilevers, Nanotechnology, Vol. 18, No. 18, pp. 185504, 2007.
[27] N. Martinez, J. R. Lozano, E. Herruzo, F. Garcia, C. Richter, T. Sulzbach, R. Garcia, Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids, Nanotechnology, Vol. 19, No. 38, pp. 384011, 2008.
[28] J. R. Lozano, R. Garcia, Theory of multifrequency atomic force microscopy, Physical Review Letters, Vol. 100, No. 7, pp. 076102, 2008.
[29] J. R. Lozano, R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy, Physical Review B, Vol. 79, No. 1, pp. 014110, 2009.
[30] T. R. Rodrıguez, R. Garcı́a, Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever, Applied Physics Letters, Vol. 84, No. 3, pp. 449-451, 2004.
[31] S. Rützel, S. I. Lee, A. Raman, Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials, in Proceeding of, The Royal Society, pp. 1925-1948.
[32] A. H. Nayfeh, Introduction to perturbation techniques: John Wiley & Sons, 2011.
[33] A. H. Nayfeh, D. T. Mook, Nonlinear oscillations: John Wiley & Sons, 2008.
[34] A. H. Nayfeh, Perturbation methods: John Wiley & Sons, 2008.