مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر رفتار دینامیکی پره‌ها بر انتقال حرارت طبیعی درون محفظه بسته مربعی

نویسندگان
1 مدرس دانشگاه هوایی شهید ستاری-دانشجوی دکترای دانشگاه علم و صنعت ایران-قوای محرکه خودرو
2 مهندسی مکانیک- دانشگاه شهرکرد
3 استادیار، مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری،تهران
چکیده
تاثیر رفتار دینامیکی پره‌ها بر انتقال حرارت جابجایی طبیعی درون یک محفظه مربعی بسته به صورت عددی مورد مطالعه قرار گرفت. پره‌ها نازک و هادی انتقال حرارت در طول ثابت 0.2 و در 9 موقعیت مختلف بر روی دیواره‌های گرم و سرد محفظه مورد بررسی قرار گرفته‌اند. دیواره‌های افقی بالا و پایین محفظه عایق و دیواره‌های گرم و سرد عمودی به‌ترتیب در شرایط دما ثابتT_h و T_c قرار دارند. برای حل از متد المان محدود مطابق با شبکه بندی مثلثی بی‌سازمان و الگوریتم غیر‌خطی استفاده شده است. بعلاوه، به منظور حل معادلات بی‌بعد بخش ارتجاعی نیز از روش نیوتون - رافسون استفاده شده است. براساس نتایج، رفتار دینامیکی پره‌ها سبب کاهش میزان انتقال حرارت در مقایسه با پره صلب درون محفظه شده است. بعلاوه، تغییر شکل پره‌ها و موقعیت قرار‌گیری آنها تاثیر به‌سزایی در کاهش یا افزایش میزان انتقال حرارت درون محفظه دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of dynamic behavior of fins in natural convection in a square cavity

نویسندگان English

anvar ahmadkhah 1
Iman Arvin 2
Alireza davoudinik 3
1 teacher in Aeronautical university of science&echnologyPhd student in Iran University of Science&Technology
2 mechanical engineering- Shahrekord University
3 Department of Aerospace Engineering, Shahid Sattari University of Aeronautical Science and Technology, Tehran, Iran
چکیده English

The effect of the dynamic behavior of fins on the natural convection heat transfer inside a square cavity was studied numerically. Attachment of conductive thin and flexible fins with length equal to 0.2, positioned at 9 locations on both hot and cold wall was examined. The top and the bottom horizontal walls of the cavity were insulated while their left and the right vertical walls were maintained at a constant temperature T_h and T_c. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Furthermore, the dimensionless equations of flexible parts of the cavity were solved using the Newton-Raphson method. Based on our results, the dynamic behavior of the fins leads to decrease the rate of heat transfer in compared to the rigid fin. It also found the shape of the fins and its positions play an important role in decrease or increase of heat rate inside the cavity.

کلیدواژه‌ها English

Natural Convection
elastic fin
Dynamic Mesh
Lagrangian-Eulerian
[1] A. Elatar, M. A. Teamah, M. A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin, International Journal of Thermal Sciences, vol. 99, pp. 41-51, 2015.
[2] M. Nazari, S. Ramzanim, Natural Convection in a Square Cavity with a Heated Obstacle Using Lattice Boltzmann Method, Modares Mechanical Engineering, vol. 11, pp. 119-133, 2011. (In Persain فارسی)
[3] R. L. Frederick, Natural convection in an inclined square enclosure with a partition attached to its cold wall, International journal of heat and mass transfer, vol. 32, pp. 87-94, 1989.
[4] A. Nag, A. Sarkar, V. Sastri, Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall, Computer methods in applied mechanics and engineering, vol. 110, pp. 143-156, 1993.
[5] E. Bilgen, Natural convection in cavities with a thin fin on the hot wall, International Journal of Heat and Mass Transfer, vol. 48, pp. 3493-3505, 2005.
[6] X. Shi, J. Khodadadi, Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF HEAT TRANSFER, vol. 125, pp. 624-634, 2003.
[7] A. Ben-Nakhi, A. J. Chamkha, Effect of length and inclination of a thin fin on natural convection in a square enclosure, Numerical Heat Transfer, vol. 50, pp. 381-399, 2006.
[8] A. Haghighi, K. Vafai, Optimal positioning of strips for heat transfer reduction within an enclosure, Numerical Heat Transfer, Part A: Applications, vol. 66, pp. 17-40, 2014.
[9] E. H. Dowell, K. C. Hall, Modeling of fluid-structure interaction, Annual Review of Fluid Mechanics, vol. 33, pp. 445-490, 2001.
[10] G. Hou, J. Wang, A. Layton, Numerical methods for fluid-structure interaction—a review, Communications in Computational Physics, vol. 12, pp. 337-377, 2012.
[11] O. Doaré, S. Michelin, Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency, Journal of Fluids and Structures, vol. 27, pp. 1357-1375, 2011.
[12] N. Kambouchev, R. Radovitzky, L. Noels, Fluid–structure interaction effects in the dynamic response of free-standing plates to uniform shock loading, Journal of Applied Mechanics, vol. 74, pp. 1042-1045, 2007.
[13] A. Al-Amiri, K. Khanafer, Fluid–structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall, International Journal of Heat and Mass Transfer, vol. 54, pp. 3826-3836, 2011.
[14] K. Khanafer, A. Alamiri, I. Pop, Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell, International Journal of Heat and Mass Transfer, vol. 53, pp. 1646-1653, 2010.
[15] K. Khanafer, Fluid–structure interaction analysis of non-Darcian effects on natural convection in a porous enclosure, International Journal of Heat and Mass Transfer, vol. 58, pp. 382-394, 2013.
[16] E. Jamesahar, M. Ghalambaz, A. J. Chamkha, Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition, International Journal of Heat and Mass Transfer, vol. 100, pp. 303-319, 2016.
[17] M. Ghalambaz, E. Jamesahar, M. A. Ismael, A. J. Chamkha, Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity, International Journal of Thermal Sciences, vol. 111, pp. 256-273, 2017.
[18] H.-J. Bungartz, M. Schäfer, Fluid-structure interaction: modelling, simulation, optimisation vol. 53: Springer Science & Business Media, 2006.
[19] G. T. Mase, R. E. Smelser, G. E. Mase, Continuum mechanics for engineers: CRC press, 2009.
[20] N. Takashi, T. J. Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Computer methods in applied mechanics and engineering, vol. 95, pp. 115-138, 1992.
[21] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, et al., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), vol. 31, pp. 363-396, 2005.
[22] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, International Journal for numerical methods in fluids, vol. 3, pp. 249-264, 1983.
[23] S. H. Tasnim, M. R. Collins, Numerical analysis of heat transfer in a square cavity with a baffle on the hot wall, International communications in heat and mass transfer, vol. 31, pp. 639-650, 2004.