[1] A. Elatar, M. A. Teamah, M. A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin, International Journal of Thermal Sciences, vol. 99, pp. 41-51, 2015.
[2] M. Nazari, S. Ramzanim, Natural Convection in a Square Cavity with a Heated Obstacle Using Lattice Boltzmann Method, Modares Mechanical Engineering, vol. 11, pp. 119-133, 2011. (In Persain فارسی)
[3] R. L. Frederick, Natural convection in an inclined square enclosure with a partition attached to its cold wall, International journal of heat and mass transfer, vol. 32, pp. 87-94, 1989.
[4] A. Nag, A. Sarkar, V. Sastri, Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall, Computer methods in applied mechanics and engineering, vol. 110, pp. 143-156, 1993.
[5] E. Bilgen, Natural convection in cavities with a thin fin on the hot wall, International Journal of Heat and Mass Transfer, vol. 48, pp. 3493-3505, 2005.
[6] X. Shi, J. Khodadadi, Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF HEAT TRANSFER, vol. 125, pp. 624-634, 2003.
[7] A. Ben-Nakhi, A. J. Chamkha, Effect of length and inclination of a thin fin on natural convection in a square enclosure, Numerical Heat Transfer, vol. 50, pp. 381-399, 2006.
[8] A. Haghighi, K. Vafai, Optimal positioning of strips for heat transfer reduction within an enclosure, Numerical Heat Transfer, Part A: Applications, vol. 66, pp. 17-40, 2014.
[9] E. H. Dowell, K. C. Hall, Modeling of fluid-structure interaction, Annual Review of Fluid Mechanics, vol. 33, pp. 445-490, 2001.
[10] G. Hou, J. Wang, A. Layton, Numerical methods for fluid-structure interaction—a review, Communications in Computational Physics, vol. 12, pp. 337-377, 2012.
[11] O. Doaré, S. Michelin, Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency, Journal of Fluids and Structures, vol. 27, pp. 1357-1375, 2011.
[12] N. Kambouchev, R. Radovitzky, L. Noels, Fluid–structure interaction effects in the dynamic response of free-standing plates to uniform shock loading, Journal of Applied Mechanics, vol. 74, pp. 1042-1045, 2007.
[13] A. Al-Amiri, K. Khanafer, Fluid–structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall, International Journal of Heat and Mass Transfer, vol. 54, pp. 3826-3836, 2011.
[14] K. Khanafer, A. Alamiri, I. Pop, Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell, International Journal of Heat and Mass Transfer, vol. 53, pp. 1646-1653, 2010.
[15] K. Khanafer, Fluid–structure interaction analysis of non-Darcian effects on natural convection in a porous enclosure, International Journal of Heat and Mass Transfer, vol. 58, pp. 382-394, 2013.
[16] E. Jamesahar, M. Ghalambaz, A. J. Chamkha, Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition, International Journal of Heat and Mass Transfer, vol. 100, pp. 303-319, 2016.
[17] M. Ghalambaz, E. Jamesahar, M. A. Ismael, A. J. Chamkha, Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity, International Journal of Thermal Sciences, vol. 111, pp. 256-273, 2017.
[18] H.-J. Bungartz, M. Schäfer, Fluid-structure interaction: modelling, simulation, optimisation vol. 53: Springer Science & Business Media, 2006.
[19] G. T. Mase, R. E. Smelser, G. E. Mase, Continuum mechanics for engineers: CRC press, 2009.
[20] N. Takashi, T. J. Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Computer methods in applied mechanics and engineering, vol. 95, pp. 115-138, 1992.
[21] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, et al., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), vol. 31, pp. 363-396, 2005.
[22] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, International Journal for numerical methods in fluids, vol. 3, pp. 249-264, 1983.
[23] S. H. Tasnim, M. R. Collins, Numerical analysis of heat transfer in a square cavity with a baffle on the hot wall, International communications in heat and mass transfer, vol. 31, pp. 639-650, 2004.